компиляция с файла gcc в linux

Unix как IDE: Компиляция

Под Unix существует множество компиляторов и интерпретаторов, но здесь мы будем обсуждать лишь gcc как средство компиляции C-кода, и коротко коснемся использования perl в качестве примера интерпретатора.

GCC — это набор компиляторов, обладающий очень почтенным возрастом и распространяемый под лицензией GPL. Он известен как инструмент работы с программами на C и C++. Свободная лицензия и повсеместная распространенность на Unix-подобных системах стали залогом его неизменной популярности, хотя есть и более современные альтернативы, использующие инфраструктуру LLVM, такие как Clang.

Основной исполняемый файл gcc лучше представлять не как компилятор в привычном понимании, а слой абстракции над множеством отдельных инструментов программирования, выполняющих парсинг кода, компиляцию, линковку и другие действия. Это значит, что с его помощью можно не просто получить работающий бинарник из кода на C, но детально исследовать все шаги этого сложного процесса, и при необходимости подстроить его под свои нужды.

Здесь я не буду обсуждать использование make-файлов, хотя они наверняка понадобятся для любого проекта сложнее, чем в один файл. Make-файлов я коснусь в следующей статье о средствах автоматизации сборки.

Компиляция и сборка объектного кода

Объектный код компилируется вот такой командой:

Если код верен, будет создан нелинкованный двоичный объектный файл под именем example.o в текущей папке, или выведены сообщения о проблемах. Заглянуть внутрь полученного файла и увидеть его содержимое на языке ассемблера можно так:

Как вариант, можно попросить gcc сразу показать итоговый ассемблерный код при помощи параметра -S:

Вывод ассемблерного кода может быть полезно совместить с выводом самого исходника, чего можно добиться, набрав:

Препроцессор

Препроцессор C (cpp) обычно используется для подключения заголовочных файлов и определения макросов. Это стандартная часть процесса компиляции gcc, но можно просмотреть генерируемый им код, вызвав cpp напрямую:

Исходный код будет выведен в конечном виде, готовым к компиляции, с замененными макросами и подстановкой включаемых внешних файлов.

Связывание объектов

Один или несколько объектных файлов могут быть связаны в соответствующий исполняемый файл:

Компиляция, сборка и связывание

Все вышеперечисленное может быть выполнено в один шаг при помощи команды:

Этот способ проще, но компиляция объектов по отдельности дает некоторый выигрыш в производительности: не нужно компилировать не изменявшийся код, но об этом мы поговорим в следующей статье.

Включение внешних файлов и связывание

Файлы C и заголовочные файлы могу быть явно включены в компиляцию при помощи параметра -l:

Аналогично, если код нужно динамически связать с уже скомпилированной системной библиотекой, доступной в одной из системных папок ( /lib или /usr/lib ), например, ncurses, этого можно добиться использованием ключа -l:

Если в процессе компиляции внешних связей много, имеет смысл внести их в переменные окружения:

Кстати, Makefile затем и создан, чтобы избавить нас от беспокойства о таких мелочах.

План компиляции

Чтобы посмотреть подробности внутренней кухни gcc, можно добавить ключ -v, и план компиляции будет выведен в стандартный поток вывода ошибок:

Если нет нужды генерировать объектные или исполняемые файлы, то для аккуратности можно использовать -###:

Очень полезно посмотреть, какие действия gcc предпринимает без нашего ведома, кроме того, так мы можем выявить нежелательные шаги при компиляции.

Расширенный вывод сообщений об ошибках

Существует возможность добавить ключи -Wall и/или -pedantic, чтобы gcc предупреждал нас о случаях, которые не обязательно являются ошибками, но могут ими быть:

Удобно включать такие опции в Makefile или в определении makeprg для Vim, так как они отлично сочетаются с окном quickfix, и помогают писать читабельный, совместимый и безошибочный код.

Профилирование процесса компиляции

Вы можете включить опцию -time, чтобы gcc отображал в тексте вывода время выполения каждого из шагов:

Оптимизация

Подобно любой команде Bash, все это можно вызывать прямо из Vim:

Интерпретаторы

Подход к интерпретируемому коду в Unix-системах иной. В своих примерах я буду использовать Perl, но те же принципы применимы для кода, например, на Python или Ruby.

Inline-код

Можно строку Perl-кода прямо на исполнение интерпретатору любым из перечисленных ниже способов Первый, наверное, самый простой и общеупотребительный способ работы с Perl; второй использует синтаксис heredoc, а третий — это классический конвейер Unix.

Конечно, в будничной жизни мы храним код в файле, который можно вызвать прямо вот так:

Можно проверить синтаксис кода без его выполнения с помощью ключа -c:

Порой хочется использовать скрипт подобно любому исполняемому бинарнику, не беспокоясь о том, что он из себя представляет. Для этого в скрипт добавляют первой строкой так называемый «shebang«, указывающий путь к интерпретатору, которому следует передать на исполнение данный файл.

Скрипту после этого можно ставить атрибут исполняемого файла вызовом chmod. Также хорошим тоном считается переименовать файл, убрав расширения, поскольку он теперь считается почти настоящим исполняемым файлом:

Затем файл можно вызывать напрямую, без указания интерпретатора:

Вся эта кухня так здорово работает, что многие стандартные утилиты Linux-систем, такие как adduser, в действительности являются скриптами на Perl или Python.

В следующей публикации я расскажу о методах работы с make для сборки проектов, сравнимых с привычными IDE.

Источник

GNU Compiler Collection, первые шаги

Эта заметка призвана на простых примерах познакомить начинающего nix-разработчика с инструментами GNU, в частности с компилятором GCC.

С его помощью мы и создадим простейшую программу. По большому счету все, как обычно. Заводим специальную папку, в которой будет размещаться проект.
Создаем в ней файл с именем: hello.c
Открываем файл в любом текстовом редакторе и пишем простейший код:

#include
int main(void)
<
printf(«Hello world!»);
return(0);
>

Сохраняем файл и выполняем команду: gcc hello.c

В созданной нами папке появился новый файл — a.out, это название присваивается по умолчанию, если специально не задано другого.

И радуемся в связи с первой написанной программой в линуксе!

Идем далее. При запуске исполняемого файла, если мы укажем только его название, система будет искать его в каталогах /usr/bin и /usr/local/bin, и, естественно, не найдет. Первый из них предназначен для размещения стабильных версий программ, как правило, входящих в дистрибутив Linux. Второй – для программ, устанавливаемых самим пользователем (за стабильность которых никто не ручается). По умолчанию, при сборке программы, устанавливаются в каталог /usr/local/bin.

Флаги используемые при компиляции

Название получаемого файла такое же, но компилятор изменяет расширение .c на .o (но указать можно и вручную).

Флаг -x используем, если создаётся объектный файл из исходника, уже обработанного препроцессором (например такого, какой мы получили выше), мы должны обязательно указать явно, что компилируемый файл является файлом исходного кода, обработанный препроцессором, и имеющий теги препроцессора. В противном случае он будет обрабатываться, как обычный файл C++, без учёта тегов препроцессора, а значит связь с объявленными функциями не будет устанавливаться.

Для чего нужна вся эта возня с промежуточными этапами?
Программы редко состоят из одного файла. Как правило исходных файлов несколько, и они объединены в проект. И в некоторых исключительных случаях программу приходится компоновать из нескольких частей, написанных, возможно, на разных языках. В этом случае приходится запускать компиляторы разных языков, чтобы каждый получил объектный файл из своего исходника, а затем уже эти полученные объектные файлы компоновать в исполняемую программу.

Источник

Компиляция и компоновка с помощью GNU Compiler Collection (GCC)

В состав GCC входят:

В состав GCC не входят:

Тем не менее, они необходимы для компиляции программ на Си, ввиду чего будут рассмотрены наряду с инструментами GCC. Команда запуска GCC для языка Си в общем виде выглядит следующим образом:

где в параметрах могут идти вперемешку имена входных файлов для компиляции и опции, управляющие компиляцией. В дальнейших разделах использование gcc описывается более подробно.

Схема трансляции программ написанных на Си

Трансляция программы состоит из следующих этапов:

Препроцессирование.

Трансляция в ассемблер.

Ассемблирование.

Компоновка.

Компоновщик получает на вход набор объектных файлов, соответствующим единицам трансляции, составляющим программу, подключает к ним стандартную библиотеку языка Си и библиотеки, указанные пользователем, и на выходе получает исполняемую программу.

Запуск транслятора gcc

Рассмотрим основные возможности транслятора GNU Си. В командной строке задаётся список файлов для обработки. Какие операции необходимо выполнить с файлами – зависит от суффикса имен файлов. Возможные суффиксы перечислены в таблице ниже. Если имя файла имеет нераспознанный суффикс, это имя передаётся компоновщику

Суффикс имени файла Выполняемые действия
.h Заголовочный файл на языке Си. Не должен использоваться в аргументах команды gcc. Попытка трансляции такого файла вызывает сообщение об ошибке.
.c Файл на языке Си. Выполняется препроцессирование, трансляция ассемблирование и компоновка.
.i Препроцессированный файл на языке Си. Выполняется трансляция, ассемблирование и компоновка.
.s Препроцессированный файл на языке Си. Выполняется трансляция, ассемблирование и компоновка.
.S Файл на языке ассемблера. Выполняется препроцессирование, ассемблирование и компоновка
.o Объектный файл. Выполняется компоновка.
.a Файл статической библиотеки. Выполняется компоновка.

Действия по трансляции файла определяются для каждого указанного в командной строке файла индивидуально. Например, если в командной строке указаны имена файлов 1.c и 2.o, то для первого файла будут выполнены все шаги трансляции, а для второго – только компоновка. Исполняемый файл будет содержать результат трансляции первого файла, скомпонованный со вторым файлом и стандартными библиотеками.

Пользователь может явно задать, на какой фазе нужно остановиться. По умолчанию транслятор пытается выполнить все необходимые фазы, включая компоновку программы. Конечная фаза трансляции программы определяется для всех транслируемых за один вызов gcc файлов указанием одной из опций, перечисленных в таблице.

Например, командная строка

транслирует два файла на языке Си, объединяя их в одну программу с именем 1.

Использование стандартных библиотек языка Си

В языках Си и Си++ библиотеки состоят из двух частей:

Заголовочных файлов, содержащих объявления типов данных, констант, прототипов функций и внешних переменных, которые подключаются к исходным файлам на этапе препроцессирования, формируя единицы трансляции.

Заголовочные файлы стандартной библиотеки находятся в каталоге /usr/include и его подкаталогах, например, /usr/include/stdio.h или /usr/include/sys/types.h. Программа-драйвер gcc автоматически добавляет этот каталог в список для поиска заголовочных файлов, поэтому каталог /usr/include не нужно задавать в опции –I.

Файлы динамических библиотек размещаются в каталоге /lib или /usr/lib, а файлы статических библиотек – в каталоге /usr/lib. Они задаются автоматически и опция –L для них не нужна. Файл динамической библиотеки языка Си называется libc.so и полный путь к нему – /lib/libc.so.

Таким образом, если выписать явно пути и библиотеки, задаваемые при компиляции программы на Си с помощью gcc неявно, мы получим примерно следующую командную строку:

Компоновка программы

Если исполняемая программа компонуется из нескольких единиц трансляции, компоновщик использует свои правила видимости имён, которые приведены ниже:

Последнее правило можно продемонстрировать на следующем примере. Предположим, что в трёх файлах определена переменная var следующим образом:

Если все три единицы компиляции объединяются в одну программу, то переменная var каждого из трёх файлов будет располагаться по одному и тому же адресу, и каждая из трёх функций будет работать, по сути, с общей переменной. Чтобы предотвратить такое слияние переменных можно использовать явную инициализацию переменной var, тогда компоновщик выдаст сообщение об ошибке как показано ниже.

Видимость глобальных переменных при компоновке можно также регулировать с помощью спецификаторов класса памяти extern и static. Спецификатор extern запрещает компилятору выделять память под переменную в данном модуле. Спецификатор static локализует область видимости переменной единицей трансляции, в которой она определена.

Программы из нескольких единиц трансляции

Как правило, сложные программы состоят из нескольких исходных файлов, которые объединяются компоновщиком. При написании таких программ полезно следовать следующим рекомендациям

При группировке функций и переменных по исходным файлам логически сильно связанные функции объединяются в один исходный файл. Данная рекомендация соответствует способу реализации на Си парадигмы модульного программирования, предполагающего разбиение программы на независимые части – модули. Например, если речь идет о программе-редакторе табличных данных, функции обеспечивающие сохранение таблицы в файл, могут быть помещены в один исходный файл, функции, которые выводят на экран содержимое таблицы, – в другой файл, функции, которые анализируют ввод пользователя, – в третий.

Чем больше переменных объявлено в единице компиляции с классом памяти static вместо класса памяти по умолчанию, тем лучше. Программа может быть легче модифицирована, если доступ к данным всегда происходит с помощью вызовов функций. Чем меньше «чужих» переменных использует некоторая единица компиляции, тем она проще для понимания.

В заголовочном файле помещаются макроопределения и типы данных, являющиеся интерфейсом данной единицы компиляции, то есть необходимые для использования функций и переменных этой единицы компиляции. С классом памяти extern помещаются необходимые переменные и прототипы функций, объявленные в соответствующей единице компиляции.

В заголовочный файл никогда не помещаются определения переменных с классом памяти, отличным от класса extern, и тела функций. В заголовочный файл никогда не помещаются прототипы функций с классом памяти static. Если некоторый тип или константа используются только в теле какой-либо функций и не требуется для корректного использования функциональности данной единицы компиляции другими модулями, этот тип или константа также не помещаются в заголовочный файл.

Источник

Незамысловатый блог

03.12.2010

О GCC, компиляции и библиотеках

Основы

Перейдём к практике. Напишем, откомпилируем и исполним какую-нибудь незамысловатую программу. Не будем оригинальничать, в качестве исходного файла примера программы на языке C сотворим файл с вот таким содержимым:

printf( «Hello World \n » );

Теперь в каталоге c hello.c отдадим команду:

Через несколько долей секунды в каталоге появиться файл a.out :

Это и есть готовый исполняемый файл нашей программы. По умолчанию gcc присваивает выходному исполняемому файлу имя a.out (когда-то очень давно это имя означало assembler output).

Запустим получившийся программный продукт:

Утилита file выводит информацию о типе (с точки зрения системы) переданного в коммандной строке файла, для некоторых типов файлов выводит всякие дополнительные сведения касающиеся содержимого файла.

$ file hello.c
hello.c: ASCII C program text
$ file annotation.doc
annotation.doc: CDF V2 Document, Little Endian, Os: Windows, Version 5.1, Code page: 1251, Author: MIH, Template: Normal.dot, Last Saved By: MIH, Revision Number: 83, Name of Creating Application: Microsoft Office Word, Total Editing Time: 09:37:00, Last Printed: Thu Jan 22 07:31:00 2009, Create Time/Date: Mon Jan 12 07:36:00 2009, Last Saved Time/Date: Thu Jan 22 07:34:00 2009, Number of Pages: 1, Number of Words: 3094, Number of Characters: 17637, Security: 0

Вот собственно и всё, что требуется от пользователя для успешного применения gcc :)

Процесс компиляции можно разбить на 4 основных этапа: обработка препроцессором, собственно компиляция, ассемблирование, линковка (связывание).

Опции gcc позволяют прервать процесс на любом из этих этапов.

После препроцессинга наступает очередь компиляции. Компилятор преобразует исходный текст программы на языке высокого уровня в код на языке ассемблера.

Получить исполняемый код разумеется можно и из файла hello.s :

Если полученный объектный файл hello.o передать линковщику, последний вычислит адреса ссылок, добавит код запуска и завершения программы, код вызова библиотечных функций и в результате мы будем обладать готовым исполняемым файлом программы.

Ну вот пожалуй о компиляции и все. Теперь коснемся некоторых, на мой взгляд важных, опций gcc.

Компиляция с уровнем оптимизации по умолчанию:

Компиляция с максимальным уровнем оптимизации:

Увы, для реальных проектов разница в производительности при различных уровнях оптимизации практически не заметна.

Об опциях передаваемых линковщику будет сказано ниже.

Собственно о компиляции все. Далее поговорим о раздельной компиляции и создании библиотек.

c c-header c-cpp-output

objective-c objective-c-header objective-c-cpp-output

objective-c++ objective-c++-header objective-c++-cpp-output

Назначение аргументов должно быть понятно из их написания (здесь cpp не имеет ни какого отношения к C++, это файл исходного кода предварительно обработанный препроцессором). Проверим:

Раздельная компиляция

1. Позволяет сделать код программы (проекта) более удобочитаемым. Файл исходника на несколько десятков экранов становиться практически неохватным. Если, в соответствии с некой (заранее продуманной) логикой, разбить его на ряд небольших фрагментов (каждый в отдельном файле), совладать со сложностью проекта будет гораздо проще.

2. Позволяет сократить время повторной компиляции проекта. Если изменения внесены в один файл нет смысла перекомпилировать весь проект, достаточно заново откомпилировать только этот изменённый файл.

3. Позволяет распределить работу над проектом между несколькими разработчиками. Каждый программист творит и отлаживает свою часть проекта, но в любой момент можно будет собрать (пересобрать) все получающиеся наработки в конечный продукт.

4. Без раздельной компиляции не существовало бы библиотек. Посредством библиотек реализовано повторное использование и распространение кода на C/C++, причем кода бинарного, что позволяет с одной стороны предоставить разработчикам простой механизм включения его в свои программы, с другой стороны скрыть от них конкретные детали реализации. Работая над проектом, всегда стоит задумываться над тем, а не понадобиться что-либо из уже сделанного когда-нибудь в будущем? Может стоит заранее выделить и оформить часть кода как библиотеку? По моему, такой подход, существенно упрощает жизнь и экономит массу времени.

GCC, разумеется, поддерживает раздельную компиляцию, причем не требует от пользователя каких либо специальных указаний. В общем все очень просто.

Вот практический пример (правда весьма и весьма условный).

Набор файлов исходного кода:

#include «first.h»
#include «second.h»

printf( «Main function. \n » );

printf( «First function. \n » );

printf( «Second function. \n » );

В общем имеем вот что:

Все это хозяйство можно скомпилировать в одну команду:

Только это не даст нам практически ни каких бонусов, ну за исключением более структурированного и удобочитаемого кода, разнесённого по нескольким файлам. Все перечисленные выше преимущества появятся в случае такого подхода к компиляции:

Что мы сделали? Из каждого исходного файла (компилируя с опцией -c ) получили объектный файл. Затем объектные файлы слинковали в итоговый исполняемый. Разумеется команд gcc стало больше, но в ручную ни кто проекты не собирает, для этого есть утилиты сборщики (самая популярная make). При использовании утилит сборщиков и проявятся все из перечисленных выше преимуществ раздельной компиляции.

Просмотреть таблицу символов можно с помощью утилиты nm.

Таблица символов прописывается не только в объектный, но и в исполняемый файл:

Необходимо отметить, что в ходе компоновки, линковщик не делает ни каких проверок контекста вызова функций, он не следит ни за типом возвращаемого значения, ни за типом и количеством принимаемых параметров (да ему и не откуда взять такую информацию). Все проверки корректности вызовов должны быть сделаны на этапе компиляции. В случае мультифайлового программирования для этого необходимо использовать механизм заголовочных файлов языка C.

Библиотеки

С точки зрения операционной системы и прикладного программного обеспечения библиотеки бывают статическими и разделяемыми (динамическими).

Код статических библиотек включается в состав исполняемого файла в ходе линковки последнего. Библиотека оказывается «зашитой» в файл, код библиотеки «сливается» с остальным кодом файла. Программа использующая статические библиотеки становиться автономной и может быть запущена практически на любом компьютере с подходящей архитектурой и операционной системой.

Код разделяемой библиотеки загружается и подключается к коду программы операционной системой, по запросу программы в ходе её исполнения. В состав исполняемого файла программы код динамической библиотеки не входит, в исполняемый файл включается только ссылка на библиотеку. В результате, программа использующая разделяемые библиотеки перестает быть автономной и может быть успешно запущена только в системе где задействованные библиотеки установлены.

Парадигма разделяемых библиотек предоставляет три существенных преимущества:

1. Многократно сокращается размер исполняемого файла. В системе, включающей множество бинарных файлов, использующих один и тот же код, отпадает необходимость хранить копию этого кода для каждого исполняемого файла.

2. Код разделяемой библиотеки используемый несколькими приложениями храниться в оперативной памяти в одном экземпляре (на самом деле не всё так просто. ), в результате сокращается потребность системы в доступной оперативной памяти.

3. Отпадает необходимость пересобирать каждый исполняемый файл в случае внесения изменений в код общей для них библиотеки. Изменения и исправления кода динамической библиотеки автоматически отразятся на каждой из использующих её программ.

Без парадигмы разделяемых библиотек не существовало бы прекомпиллированных (бинарных) дистрибутивов Linux (да ни каких бы не существовало). Представьте размеры дистрибутива, в каждый бинарный файл которого, был бы помещен код стандартной библиотеки C (и всех других подключаемых библиотек). Так же представьте что пришлось бы делать для того, что бы обновить систему, после устранения критической уязвимости в одной из широко задействованных библиотек.

Теперь немного практики.

В начале создадим и используем статическую библиотеку.

Ну а теперь, введем следующую последовательность команд:

Для создания индекса архива существует специальная утилита ranlib. Библиотеку libhello.a можно было сотворить и так:

Впрочем библиотека будет прекрасно работать и без индекса архива.

Теперь воспользуемся нашей библиотекой:

Ну теперь комментарии. Появились две новые опции gcc:

Здесь необходимо сделать небольшое замечание. Дело в том, что для ряда опций gcc важен порядок их следования в командной строке. Так линковщик ищет код, соответствующий указанным в таблице символов файла именам в библиотеках, перечисленных в командной строке после имени этого файла. Содержимое библиотек перечисленных до имени файла линковщик игнорирует:

Такая особенность поведения gcc обусловлена желанием разработчиков предоставить пользователю возможность по разному комбинировать файлы с библиотеками, использовать пересекающие имена. На мой взгляд, если возможно, лучше этим не заморачиваться. В общем подключаемые библиотеки необходимо перечислять после имени ссылающегося на них файла.

Существует альтернативный способ указания местоположения библиотек в системе. В зависимости от дистрибутива, переменная окружения LD_LIBRARY_PATH или LIBRARY_PATH может хранить список разделенных знаком двоеточия каталогов, в которых линковщик должен искать библиотеки. Как правило, по умолчанию эта переменная вообще не определена, но ни чего не мешает её создать:

Теперь создадим и используем библиотеку динамическую.

Набор исходных файлов остается без изменения. Вводим команды, смотрим что получилось, читаем комментарии:

Что получили в результате?

Убедимся, что заданная строка soname действительно прописана в файле нашей библиотеки. Воспользуемся мега утилитой objdump с опцией -p :

В приведенном примере создания библиотеки мы неотступно следовали принципам раздельной компиляции. Разумеется скомпилировать библиотеку можно было бы и вот так, одним вызовом gcc:

Теперь попытаемся воспользоваться получившейся библиотекой:

Линковщик ругается. Вспоминаем, что было сказано выше о символических ссылках. Создаем libhello.so и повторяем попытку:

Теперь все довольны. Запускаем созданный бинарник:

Создаем соответствующую ссылку и повторно запускаем приложение:

Заработало. Теперь комментарии по новым опциям gcc.

Благодаря указанной опции, при запуске программы отпала необходимость изменять переменные окружения. Понятно, что если перенести программу в другой каталог и попытаться запустить, файл библиотеки будет не найден и загрузчик выдаст сообщение об ошибке:

Узнать какие разделяемые библиотеки необходимы приложению можно и с помощью утилиты ldd:

В выводе ldd для каждой требуемой библиотеки указывается её soname и полный путь к файлу библиотеки, определённый в соответствии с настройками системы.

Сейчас самое время поговорить о том где в системе положено размещать файлы библиотек, где загрузчик пытается их найти и как этим процессом управлять.

В соответствии с соглашениями FHS (Filesystem Hierarchy Standard) в системе должны быть два (как минимум) каталога для хранения файлов библиотек:

Загрузчик по умолчанию будет искать файлы библиотек в этих каталогах.

Убедимся в сказанном:

Ну и в конце поговорим о том как уживаются вместе статические и динамические версии библиотек. В чем собственно вопрос? Выше, когда обсуждались принятые имена и расположение файлов библиотек было сказано, что файлы статической и динамической версий библиотеки хранятся в одном и том же каталоге. Как же gcc узнает какой тип библиотеки мы хотим использовать? По умолчанию предпочтение отдается динамической библиотеки. Если линковщик находит файл динамической библиотеки, он не задумываясь цепляет его к исполняемому файлу программы:

Обратите внимание на размер исполняемого файла программы. Он минимально возможный. Все используемые библиотеки линкуются динамически.

Так как размер кода библиотеки libhello ничтожен,

размер получившегося исполняемого файла практически не отличается от размера файла созданного с использованием динамической линковки.

Ну вот пожалуй и все. Большое спасибо всем, кто закончил чтение на этом месте.

Источник

Понравилась статья? Поделиться с друзьями:

Не пропустите наши новые статьи:

  • компиляция sh в линукс
  • компиляция python в linux
  • компиляция linux программ для windows
  • компиляция golang для linux
  • компиляция c linux в терминале

  • Операционные системы и программное обеспечение
    0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest
    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии