что такое хлоропласт в биологии

Хлоропласт

Содержание

Происхождение

Предполагают, что хлоропласты возникли из цианобактерий, так как являются двухмембранным органоидом, имеют собственную ДНК и РНК, полноценный аппарат синтеза белка (причем рибосомы прокариотического типа — 70S), размножаются бинарным делением, а мембраны тилакоидов похожи на мембраны прокариот (наличием кислых липидов) и напоминают соответствующие органеллы у цианобактерий.

См. также

Примечания

Комментарии

Источники

Полезное

Смотреть что такое «Хлоропласт» в других словарях:

хлоропласт — хлоропласт … Орфографический словарь-справочник

ХЛОРОПЛАСТ — ХЛОРОПЛАСТ, микроскопическое образование зеленого цвета в растительной клетке, внутри которого осуществляется ФОТОСИНТЕЗ. Хлоропласт заключен в оболочку, образованную из двух мембран, и содержит внутренние мембраны, что увеличивает поверхность,… … Научно-технический энциклопедический словарь

хлоропласт — пластида, органелла Словарь русских синонимов. хлоропласт сущ., кол во синонимов: 2 • органелла (11) • … Словарь синонимов

хлоропласт — Пластида растений, содержащая хлорофилл, в которой происходит фотосинтез; на внутримембранном матриксе Х. расположены граны, соединенные тилакоидами, в которых локализованы пигменты; Х. содержат рибосомы, ферменты, крахмальные зерна, а также ДНК … Справочник технического переводчика

хлоропласт(ы) — Специализированные хлорофилл содержащие органеллы (пластиды) в клетках эукариот, места фотоситеза у растений [http://www.dunwoodypress.com/148/PDF/Biotech Eng Rus.pdf] Тематики биотехнологии EN chloroplast … Справочник технического переводчика

хлоропласт — chloroplastas statusas T sritis augalininkystė apibrėžtis Chlorofilo turinti augalo ląstelės plastidė, kurioje vyksta fotosintezė. atitikmenys: angl. chloroplast rus. хлоропласт … Žemės ūkio augalų selekcijos ir sėklininkystės terminų žodynas

Хлоропласт — м. см. хлоропласты Толковый словарь Ефремовой. Т. Ф. Ефремова. 2000 … Современный толковый словарь русского языка Ефремовой

хлоропласт — хлоропласт, хлоропласты, хлоропласта, хлоропластов, хлоропласту, хлоропластам, хлоропласт, хлоропласты, хлоропластом, хлоропластами, хлоропласте, хлоропластах (Источник: «Полная акцентуированная парадигма по А. А. Зализняку») … Формы слов

хлоропласт — хлоропл аст, а … Русский орфографический словарь

Источник

Что такое хлоропласты?

Одним из главных видов пластид являются хлоропласты. Их определение очень важно в такой науке как биология. За счет пигмента хлорофилла, который преобладает в них, хлоропласты имеют зеленый цвет. Главная их функция – это фотосинтез, но об этом мы поговорим позже более детально.

Хлоропласты – это органоиды, которые могут содержаться в клетке в разном количестве. К примеру, в одних растениях в каждой клетке содержится сотни их штук, а в некоторых водорослях – всего лишь один хлоропласт, причем очень странной формы.

Давайте же более детально разберемся, что такое хлоропласты и как они появляются в клетках. Развиваются они в некоторых клетках из пропластид, а в других ранее существующие делятся надвое, и появляются новенькие.
Высшие растения имеют хлоропласты больших размеров – около 5 мкм.

Хлоропласты: где находятся и из чего состоят

Хлоропласты состоят из таких частей:

Мембрана служит для защиты хлоропластов от разных факторов. А тилакоид имеет форму приплюснутого диска. Их может быть много в клетке. Тилакоиды объединяются в стопки, образуя собой граны. Последние связаны между собой своеобразными нитями под названием ламеллы.

Также в составе хлоропластов присутствует жидкость, называемая стромой. В ней содержатся РНК и ДНК и другие части, которые выполняют важную задачу – обеспечение полуавтономности хлоропласта. Кроме того, при избытке углеводов в составе стромы иногда образуется сахар в виде крахмала. Он позже используется растением для дыхания или производства целлюлозы.

Хлоропласты и их функции

Давайте же разберемся, какую функцию выполняют хлоропласты. Эти внутриклеточные органеллы осуществляют фотосинтез. Все растения могут производить кислород только при помощи этих частиц. Хлоропласты – это в биологии один из самых важных органоидов, так как они выполняют синтез глюкозы и воды при помощи солнечной энергии. Хлорофиллы – зеленые тельца – улавливают энергию солнца. Но как из этого получается кислород? На самом деле это всего лишь побочный эффект фотосинтеза.

К слову, этот процесс проходит в несколько этапов, и сам по себе является достаточно сложным.
Что касается хлорофилла, то это основный пигмент, без которого фотосинтез невозможен. В разных клетках он содержится в разных формах. Кроме того, в фотосинтезе принимают участие каротиноиды, пигменты другого вида.

Хлорофилл имеет головку и длинное кольцо. Солнечную энергию улавливает именно головкой. Когда солнечный свет поступает к ней, электроны возбуждаются, отделяются от хлорофиллов.

Хлоропласты: другие функции

Хлоропласты одновременно с фотосинтезом принимают участие и в других, менее важных задачах. Зеленые пластиды (так еще называются хлоропласты), собирают и хранят нужные вещества. Эти вещества необходимы для производства энергии, так необходимой для растения.

Итак, хлоропласты – это частицы клетки, которые имеют собственную ДНК, отвечают за производство энергии и участвуют в фотосинтезе.

Источник

Хлоропласты: определение, строение, функции

Хлоропласты – это уникальные структуры, обнаруженные в растительных клетках, которые специализируются на преобразовании солнечного света в энергию, которую растения могут использовать. Этот процесс называется фотосинтезом.

Хлоропласты считаются органеллами в клетках растений. Органеллы – это специальные структуры в клетках, которые выполняют конкретные функции. Основная функция хлоропласта – фотосинтез. Другие функции хлоропластов включают борьбу с болезнями, накопление энергии для клетки и изготовление аминокислот. А подробнее о фотосинтезе читайте в учебнике по биологии за 9 класс В.И. Соболя.

Большинство хлоропластов овальной формы, но они могут быть и в форме звезды, чашки и ленты. Некоторые хлоропласты небольшие по сравнению с клеткой, тогда как другие могут занять большинство пространства внутри клетки.

Структура хлоропластов достаточно сложная. Внешняя часть хлоропласта защищена гладкой внешней мембраной, которая имеет избирательную проницаемость. Непосредственно во внешней мембране находится внутренняя мембрана, которая контролирует, какие молекулы могут проходить в хлоропласт и наружу. Внешняя мембрана, внутренняя мембрана и жидкость между ними составляют оболочку хлоропласта.

Тело хлоропласта состоит из гидрофильной белковой массы – стромы или матрикса. Это жидкость внутри хлоропласта, где плавают другие структуры, такие как тилакоиды. Строма пронизана системой двохмембранних пластин – ламелей, которые располагаются параллельными рядами. Парные ламели сливаются концами и образуют замкнутое кольцо – мешочек, который называется диском.

Пигменты придают хлоропласту и растению свою окраску. Самый распространенный пигмент – хлорофилл, который придает растениям зеленый цвет. Хлорофилл помогает поглощать энергию от солнечного света. Хлоропласты также имеют собственную ДНК и рибосомы для изготовления белков с РНК.

Хлоропласты используют фотосинтез для преобразования солнечного света в пищу. Хлорофилл захватывает энергию от света и накапливает ее в специальной молекуле под названием АТФ (аденозинтрифосфат). Позже АТФ сочетается с углекислым газом и водой для получения сахаров, таких как глюкоза, которую растение может использовать как пищу.

Интересные факты о хлоропластах:

В простых клетках, как у водорослей, может быть только один-два хлоропласты. Однако сложные растительные клетки могут содержать сотни.

Хлоропласты иногда могут передвигаться внутри клетки, чтобы расположиться там, где они лучше могут поглощать солнечный свет.

«Хлоро» в хлоропласте произошло от греческого слова chloros (означает зеленый).

Наиболее обильным белком в хлоропластах является белок Рубиско. Рубиско, пожалуй, самый распространенный белок в мире.

Клетки человека и животных не нуждаются в хлоропластах, поскольку мы получаем свою энергию от пищи и ее переваривания, а не через фотосинтез.

Ученые подсчитали, что в одном квадратном миллиметре листа есть около 500 000 хлоропластов.

На самом деле есть разные цвета хлорофилла. Хлорофилл А – зеленый, это самый распространенный тип. Хлорофилл С – золотистого или коричневого цвета.

Нужно выполнить домашнее задание по биологии? Ищите все готово в разделе «ГДЗ и решебники по биологии за 9 класс».

Источник

Хлоропласты в клетке

Строение хлоропласта

В строении хлоропластов выделяют внешнюю и внутреннюю мембраны, межмембранное пространство, строму, тилакоиды, граны, ламеллы, люмен.

Тилакоид представляет собой ограниченное мембраной пространство в форме приплюснутого диска. Тилакоиды в хлоропластах объединяются в стопки, которые называют гранами. Граны связаны между собой удлиненными тилакоидами — ламеллами.

Полужидкое содержимое хлоропласта называется стромой. В ней находятся его ДНК и РНК, рибосомы, обеспечивающие полуавтономность органоида (см. Симбиогенез).

Также в строме находятся зерна крахмала. Они образуются при избытке углеводов, образовавшихся при фотосинтетической активности. Жировые капли обычно формируются из мембран разрушающихся тилакоидов.

Видео

Структура хлоропластов

Хлоропласты, как митохондрии, имеют овальную форму и имеют две мембраны: внешнюю мембрану, которая образует внешнюю поверхность хлоропласта, и внутреннюю мембрану, которая находится прямо под ним. Между внешней и внутренней мембраной находится тонкое межмембранное пространство шириной около 10-20 нанометров. Пространство внутри внутренней мембраны называется строма, В то время как внутренние мембраны митохондрий имеют много складок, называемых крист для поглощения площади поверхности внутренние мембраны хлоропластов гладкие. Вместо этого у хлоропластов есть много маленьких дискообразных мешочков, названных тилакоидами в их строме.

В сосудистых растениях и зеленых водорослях тилакоиды уложены друг на друга, а стопка тилакоидов называется гранулой (множественное число: грана). Тилакоиды содержат хлорофиллы и каротиноиды, и эти пигменты поглощают свет в процессе фотосинтеза. Светопоглощающие пигменты группируются с другими молекулами, такими как белки, с образованием комплексов, известных как фотосистемы. Два разных вида фотосистем – это фотосистемы I и II, и они играют роль в разных частях светозависимых реакций.

В строме ферменты образуют сложные органические молекулы, которые используются для накопления энергии, например, углеводы. Строма также содержит свою собственную ДНК и рибосомы, которые аналогичны тем, которые обнаружены в фотосинтезирующих бактериях. По этой причине считается, что хлоропласты эволюционировали в эукариотических клетках от свободно живущих бактерий, так же как и митохондрии.

Темновая фаза фотосинтеза

Что образуется при фотосинтезе в темновую фазу? В строме хлоропластов с помощью энергии АТФ и восстановителя НАДФН, полученных в световую фазу, образуются простые сахара, из которых в ходе других процессов образуется крахмал. Ферментативные процессы не нуждаются в наличии света. Важнейший процесс, происходящий в темновую фазу фотосинтеза, — фиксация углекислого газа воздуха. Синтез и превращения сахаров в хлоропластах имеют циклический характер и носят название цикл Кальвина.

В нём можно выделить три этапа:

В строме хлоропластов находится производное простого пятиуглеродного сахара рибозы. С помощью особого фермента (Рубиско) к производному рибозы присоединяется CO2 (реакция карбоксилирования) — образуется неустойчивое шестиуглеродное соединение, которое быстро распадается на две трехуглеродные молекулы. Дальше, с затратой АТФ и НАДФН, полученных в ходе световых процессов, трехуглеродное соединение модифицируется — образуется восстановленное соединение с атомом фосфора и альдегидной группой в составе. Теперь перед клеткой стоит проблема: необходимо получить шестиуглеродное соединение — глюкозу для синтеза крахмала, а также пятиуглеродное — производное рибозы для того, чтобы эти процессы могли начаться заново. Для решения этих проблем в фазу регенерации из полученных ранее трехуглеродных соединений под действием ферментов образуются четырёх-, пяти-, шести- и семиуглеродные сахара. Из шестиуглеродной молекулы образуется глюкоза, из которой синтезируется крахмал. Из пятиуглеродной молекулы образуется производное рибозы и цикл замыкается. Остальные сахара также используются клеткой в других биохимических процессах.

Отдельно стоит сказать про крайне важный фермент первой фазы цикла Кальвина — рибулозо-1,5-дифосфаткарбоксилазу (Рубиско). Это сложный фермент, состоящий из 16 субъединиц, с молекулярной массой в 8 раз больше, чем у гемоглобина. Является одним из важнейших ферментов в природе, поскольку играет центральную роль в основном механизме поступления неорганического углерода (из CO2) в биологический круговорот. Содержание Рубиско в листьях растений очень велико, он считается самым распространённым ферментом на Земле.

Рис.3. Суммарные уравнения и частные реакции фотосинтеза.

Что такое фотосинтез

Фотосинтез — процесс, при котором в клетках, содержащих хлорофилл, под действием энергии света образуются органические вещества из неорганических. При фотосинтезе растение поглощает углекислый газ и воду, синтезирует органические вещества и выделяет кислород, как побочный продукт фотосинтеза.

Процессы фотосинтеза идут в тканях, содержащих хлоропласты, — преимущественно, в листе, на который приходится большая часть процессов фотосинтеза. Такая ткань называется хлоренхима, или мезофилл.

Строение хлоропластов

Чтобы понять, что происходит в растении при фотосинтезе, изучим подробнее хлоропласты. Хлоропласты — это особые пластиды растительных клеток, в которых происходит фотосинтез. Основные элементы структурной организации хлоропластов высших растений представлены на рис.1.

Рис.1. Строение хлоропласта высших растений

Хлоропласт — это двумембранный органоид. Внешняя мембрана проницаема для большинства органических и неорганических соединений. Она содержит специальные транспортные белки, благодаря которым нужные для работы хлоропласта пептиды и другие вещества попадают в него из цитоплазмы. Внутренняя мембрана обладает избирательной проницаемостью и способна контролировать, какие именно вещества попадут во внутреннее пространство хлоропласта.

Для хлоропластов характерна сложная система внутренних мембран, позволяющая пространственно организовать фотосинтетический аппарат, упорядочить и разделить реакции фотосинтеза, несовместимые между собой, и их продукты. Мембраны образуют тилакоиды, которые, в свою очередь, собираются в «стопки» — граны. Пространство внутри тилакоидов называется внутритилакоидным пространством, или люменом.

Внутреннее пространство хлоропласта между гранами заполняет строма — гидрофильный слабоструктурированный матрикс. В строме содержатся необходимые для реакций синтеза сахаров ферменты, а также рибосомы, кольцевая молекула ДНК, крахмальные зёрна.

Функции и роль хлоропластов

Бесспорно, что самая важная и первоочередная функция хлоропластов – это осуществление фотосинтеза. Фотосинтез возможен только при наличии хлоропласта в клетках и тканях растения.

Процесс синтезирования глюкозы из воды и углекислого газа сопровождается выделением жизненно необходимого кислорода. Хлоропласты способный усваивать углекислоту. Немаловажно, что в процессе фотосинтеза кислород выступает его побочным продуктом.

Кроме хлорофилла в мембранах тилакоидов содержатся ферменты и переносчики электронов.

Хлоропласты одновременно с фотосинтезом участвуют и в других важных процессах. Один из них – сбор и накопление нужных веществ для производства необходимой растениям энергии. Так, в хлоропластах в виде капель откладываются жиры.

Очень важно, что хлоропласты имеют собственную ДНК.

Кроме того, хлоропласты связаны с производством веществ, которые устраняют патогенны, попадающие в растение.

От партнерства – ​к рабству

Красные водоросли, получившие свои пластиды в результате первичного эндосимбиоза, решили не останавливаться на достигнутом и поучаствовали в эндосимбиозе еще несколько раз. Вот только роль у них поменялась. По уже описанной схеме они были поглощены другими хищными одноклеточными эукариотами и сами превратились в эндосимбионтов, сохранив при этом пластиды, полученные ранее.

Однако превращение красных водорослей в новые клеточные органеллы было не таким простым, как раньше, – ​они, как и хищная клетка, их поглотившая, относились к сложным эукариотическим организмам, пусть и одноклеточным. Поэтому получившейся клетке пришлось решать сложные проблемы, чтобы не только сохранить, но и эффективно использовать новые органеллы.

Во-первых, в этой клетке оказалось сразу два ядра из разных организмов (не считая отдельного генома пластид в самой глубине этой «матрешки»). Поэтому новые хозяева в ходе эволюции пытались избавиться от одного из ядер, но не у всех это получилось. Пример – ​криптофиты, одноклеточные фотосинтезирующие эукариоты, всего около 165 видов. У них есть свое ядро и митохондрии, пластиды, а также редуцированное ядро бывшей красной водоросли – ​настоящее эукариотическое, но в миниатюре. Такое мини-ядро (нуклеоморф) имеет несколько механизмов защиты, не позволяющих клетке-хозяину от него избавиться.

Во-вторых, существенная проблема «матрешки», образовавшейся в результате вторичного эндосимбиоза, – ​изолированность от цитоплазмы пластид, окруженных сразу четырьмя мембранами (две мембраны достались от первичной пластиды, плюс мембрана, окружавшая клетку первого хозяина, и, наконец, мембрана пищеварительной вакуоли второго хозяина), что очень мешает прямому взаимодействию. Для эффективного фотосинтеза и контроля над своим приобретением новым хозяевам пришлось изобрести и новый способ молекулярного транспорта.

Ядро бывшей красной водоросли, доставшееся криптофитам вместе с пластидами (нуклеоморф), устроено чрезвычайно интересно. Это самое маленькое клеточное ядро из всех эукариотических, известных на сегодня: в нем всего три хромосомы, а большая часть генов «переехала» на местожительство в ядро нового хозяина. Гены, оставшиеся в нуклеоморфе криптофитов, очень редко мутируют, к тому же у них есть механизмы, не позволяющие перенести их в хозяйское ядро без утраты работоспособности. Благодаря таким уловкам ядро красной водоросли продолжает существовать, несмотря на то, что новый хозяин всеми силами пытается от него избавиться

Так появились особые поровые белки, встроенные в мембраны, – ​настоящие «ворота», через которые в двух направлениях идет транспортный поток. При этом у белков-переносчиков имеется специальный ключ – ​короткая аминокислотная последовательность на конце молекулы, которая отщепляется после перехода через мембрану. И для каждой из четырех мембран нужен свой «ключ».

Таким образом, некогда свободноживущие предки пластид, «решившие» взаимовыгодно и на условиях равноправия жить внутри другой клетки, в результате вторичного эндосимбиоза оказались в подчиненном положении и полностью утратили «право голоса». Новый хозяин может делать с ними все, что ему вздумается, в чем можно убедиться на нижеследующих примерах.

Принципы классификации

Пластиды делятся на три вида: лейкопласты (бесцветные), хлоропласты (окрашенные в зеленый цвет), хромопласты (имеют разные оттенки). На протяжении жизни клетки способны превращаться друг в друга. Лейкопластам свойственно переходить в хлоропласты, а последние за счёт появления бурых и прочих пигментов — в хромопласты, пластоглобулы.

Внешне зеленые вещества покрыты липидной и белковой мембранами. Полужидкая строма с тилакоидами (компартменты, ограниченные мембраной) считается основным веществом, в состав которого входят граны с каналами. Первые компоненты представлены в виде плоских круглых мешочков, расположенных перпендикулярно поверхности двухмембранных органоидов (ДО).

Уникальность их структуры заключается в хранении зеленого пигмента (хлорофилл). Главная функция хлоропластов связана с участием в фотосинтетическом явлении. В их состав входят жиры, зерна (митохондрия, пропластида), крахмал.

На долю липидов приходится до 30%. Они представлены тремя группами:

К другим компонентам, входящим в состав хлоропласта, относятся углеводы. Они представлены в виде продуктов фотосинтеза. До 25% приходится на долю минералов. Ферменты могут выполнять двойную функцию: катализацию различных реакций, обеспечение биосинтеза белков.

Внутренняя структурированность хлоропластов зависит от функциональных нагрузок, физиологического состояния. Молодые клетки размножаются за счет деления, а зрелые обладают выраженной системой гран. Если они стареют, происходит разрыв тилакоидов, распадается хлорофилл. Осенью деградация приводит к появлению хромопластов.

Главная роль хлоропластов в фотосинтезе обеспечена их способностью пассивно двигаться в клетках, увлекаемых током цитоплазмы. Веществу свойственно собирать свет и активно перемещаться с одного места на другое. При интенсивном свете оно поворачивается ребром к яркому солнцу, выстраиваясь вдоль стенок, которые параллельны лучам.

Если освещение слабое, схема движения хлоропластов следующая: они перемещаются на стенки, обращённые к солнцу, поворачиваясь наибольшей поверхностью. Когда освещение среднее, клетки занимают соответствующее положение. От условий освещения зависит то, какие пигменты хлоропластов появятся.

Для пластид и митохондрий свойственна полуавтономная степень. Кроме фотосинтеза, в первых компонентах происходит биосинтез белка. Так как они содержат в себе ДНК, поэтому принимают активное участие в наследственном комплексе: передача признаков, цитоплазматические свойства.

Описание хромопластов

К пластидам высших растений относятся хромопласты. Они имеют незначительные размеры. Для внутриклеточных органелл характерен разный окрас: красный, желтый, коричневый. Он придает соответствующий цвет осенью, плодам и цветкам, что необходимо для привлечения опылителей и животных, разносящих семена продолжительные расстояния.

Структура ткани похожа на иные пластиды. Внутренняя оболочка развита слабее внешней. У некоторых представителей она может отсутствовать. В каротиноидах (жирорастворимые пигменты) происходит накапливание кристаллов. Для определения точных функций вещества изучается таблица с формами хромопластов:

Их роль в жизни растений до конца не выяснена. Ученые предполагают, что пигменты участвуют в окислительных и восстановительных процессах, необходимых для размножения и физиологического развития клеток.

Строение лейкопластов

В органоидах этого типа накапливаются питательные компоненты. Лейкопласты имеют 2 оболочки: внутреннюю и внешнюю. На свету им свойственно превращаться в хлоропласты, но в привычном состоянии органоиды бесцветны. Основная их форма — шаровидная. Размещены они в мягких частях растений:

С учетом накапливаемого вещества лейкопласты классифицируются на следующие виды: амилопласты, элайопласты, протеинопласты. В первую группу входят органоиды с крахмалом, находящиеся в каждом растении. Если лейкопласт полностью заполнен крахмалом, он называется крахмальным зерном. Для элайопластов характерно продуцирование и запас жиров, а для протеинопластов — скопление белковых веществ.

Лейкопласты обладают ферментной субстанцией, что способствует ускоренному протеканию химических реакций. В отрицательном жизненном периоде, когда не происходит фотосинтез, они расщепляют полисахариды на простые углеводы. Так как в луковицах содержится много органоидов, поэтому им свойственно переносить длительную засуху, жару, низкую температуру. После выполнения своих функций они становятся хромопластами.

Строение хлорофилла

Что же касается строения самого хлорофилла, то он состоит из длинного углеводного хвоста и порфириновой головки. Хвост его гидрофобен, то есть боится влаги, поэтому погружен в тилакоид, головка наоборот любит влагу и находится в жидкой субстанции хлоропласта – строме. Поглощение солнечного света осуществляется именно головкой хлорофилла.

К слову биологами различается несколько разных видов хлорофилла: хлорофилл a, хлорофилл b, хлорофилл c1, хлорофилл c2 и так далее, все они обладают разным спектром поглощения солнечного света. Но больше всего в растениях именно хлорофилла а.

Источник

Понравилась статья? Поделиться с друзьями:

Не пропустите наши новые статьи:

  • что такое хлоропирамин таблетки
  • что такое хлоропирамин в ампулах
  • что такое хлороз у растений как лечить фото
  • что такое хлороз у огурцов
  • что такое хлороз томатов

  • Операционные системы и программное обеспечение
    0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest
    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии