ДНК и гены
ДНК ПРОКАРИОТ И ЭУКАРИОТ
Справа крупнейшая спираль ДНК человека, выстроенная из людей на пляже в Варне (Болгария), вошедшая в книгу рекордов Гиннесса 23 апреля 2016 года
Дезоксирибонуклеиновая кислота. Общие сведения
Дезоксирибонуклеи́новая кислота (ДНК) — макромолекула (одна из трёх основных, две другие — РНК и белки), обеспечивающая хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов. ДНК содержит информацию о структуре различных видов РНК и белков.
В клетках эукариот (животных, растений и грибов) ДНК находится в ядре клетки в составе хромосом, а также в некоторых клеточных органоидах (митохондриях и пластидах). В клетках прокариотических организмов (бактерий и архей) кольцевая или линейная молекула ДНК, так называемый нуклеоид, прикреплена изнутри к клеточной мембране. У них и у низших эукариот (например, дрожжей) встречаются также небольшие автономные, преимущественно кольцевые молекулы ДНК, называемые плазмидами.
С химической точки зрения ДНК — это длинная полимерная молекула, состоящая из повторяющихся блоков — нуклеотидов. Каждый нуклеотид состоит из азотистого основания, сахара (дезоксирибозы) и фосфатной группы. Связи между нуклеотидами в цепи образуются за счёт дезоксирибозы (С) и фосфатной (Ф) группы (фосфодиэфирные связи).
Рис. 2. Нуклертид состоит из азотистого основания, сахара (дезоксирибозы) и фосфатной группы
В подавляющем большинстве случаев (кроме некоторых вирусов, содержащих одноцепочечную ДНК) макромолекула ДНК состоит из двух цепей, ориентированных азотистыми основаниями друг к другу. Эта двухцепочечная молекула закручена по винтовой линии.
В ДНК встречается четыре вида азотистых оснований (аденин, гуанин, тимин и цитозин). Азотистые основания одной из цепей соединены с азотистыми основаниями другой цепи водородными связями согласно принципу комплементарности: аденин соединяется только с тимином (А-Т), гуанин — только с цитозином (Г-Ц). Именно эти пары и составляют «перекладины» винтовой «лестницы» ДНК (см.: рис. 2, 3 и 4).
Рис. 2. Азотистые основания
Последовательность нуклеотидов позволяет «кодировать» информацию о различных типах РНК, наиболее важными из которых являются информационные, или матричные (мРНК), рибосомальные (рРНК) и транспортные (тРНК). Все эти типы РНК синтезируются на матрице ДНК за счёт копирования последовательности ДНК в последовательность РНК, синтезируемой в процессе транскрипции, и принимают участие в биосинтезе белков (процессе трансляции). Помимо кодирующих последовательностей, ДНК клеток содержит последовательности, выполняющие регуляторные и структурные функции.
Рис. 3. Репликация ДНК
Расположение базовых комбинаций химических соединений ДНК и количественные соотношения между этими комбинациями обеспечивают кодирование наследственной информации.
Образование новой ДНК (репликация)
По завершении дупликации образуются две самостоятельные спирали, созданные из химических соединений родительской ДНК и имеющие с ней одинаковый генетический код. Таким путем ДНК способна перерывать информацию от клетки к клетке.
Более подробная информация:
СТРОЕНИЕ НУКЛЕИНОВЫХ КИСЛОТ
Дезоксирибонуклеиновая кислота (ДНК) относится к нуклеиновым кислотам. Нуклеиновые кислоты – это класс нерегулярных биополимеров, мономерами которых являются нуклеотиды.
НУКЛЕОТИДЫ состоят из азотистого основания, соединенного с пятиуглеродным углеводом (пентозой) – дезоксирибозой (в случае ДНК) или рибозой (в случае РНК), который соединяется с остатком фосфорной кислоты (H2PO3–).
Азотистые основания бывают двух типов: пиримидиновые основания – урацил (только в РНК), цитозин и тимин, пуриновые основания – аденин и гуанин.
Рис. 5. Структура нуклеотидов (слева), расположение нуклеотида в ДНК (снизу) и типы азотистых оснований (справа): пиримидиновые и пуриновые
Атомы углерода в молекуле пентозы нумеруются числами от 1 до 5. Фосфат соединяется с третьим и пятым атомами углерода. Так нуклеинотиды соединяются в цепь нуклеиновой кислоты. Таким образом, мы можем выделить 3’ и 5’-концы цепи ДНК:
Рис. 6. Выделение 3’ и 5’-концов цепи ДНК
Две цепи ДНК образуют двойную спираль. Эти цепи в спирали сориентированы в противоположных направлениях. В разных цепях ДНК азотистые основания соединены между собой с помощью водородных связей. Аденин всегда соединяется с тимином, а цитозин – с гуанином. Это называется правилом комплементарности (см. принцип комплементарности ).
Правило комплементарности:
A–T G–C |
Например, если нам дана цепь ДНК, имеющая последовательность
3’– ATGTCCTAGCTGCTCG – 5’,
то вторая ей цепь будет комплементарна и направлена в противоположном направлении – от 5’-конца к 3’-концу:
5’– TACAGGATCGACGAGC– 3’.
Рис. 7. Направленность цепей молекулы ДНК и соединение азотистых оснований с помощью водородных связей
РЕПЛИКАЦИЯ ДНК
Репликация ДНК – это процесс удвоения молекулы ДНК путем матричного синтеза. В большинстве случаев естественной репликации ДНК праймером для синтеза ДНК является короткий фрагмент РНК (создаваемый заново). Такой рибонуклеотидный праймер создается ферментом праймазой (ДНК-праймаза у прокариот, ДНК-полимераза у эукариот), и впоследствии заменяется дезоксирибонуклеотидами полимеразой, выполняющей в норме функции репарации (исправления химических повреждений и разрывов в молекле ДНК).
Репликация происходит по полуконсервативному механизму. Это значит, что двойная спираль ДНК расплетается и на каждой из ее цепей по принципу комплементарности достраивается новая цепь. Дочерняя молекула ДНК, таким образом, содержит в себе одну цепь от материнской молекулы и одну вновь синтезированную. Репликация происходит в направлении от 3’ к 5’ концу материнской цепи.
Рис. 8. Репликация (удвоение) молекулы ДНК
ДНК-синтез – это не такой сложный процесс, как может показаться на первый взгляд. Если подумать, то для начала нужно разобраться, что же такое синтез. Это процесс объединения чего-либо в одно целое. Образование новой молекулы ДНК проходит в несколько этапов:
Рис. 9. Схематическое изображение процесса репликации ДНК: (1) Отстающая цепь (запаздывающая нить), (2) Ведущая цепь (лидирующая нить), (3) ДНК-полимераза α ( Polα ), (4) ДНК-лигаза, (5) РНК-праймер, (6) Праймаза, (7) Фрагмент Оказаки, (8) ДНК-полимераза δ ( Polδ ), (9) Хеликаза, (10) Однонитевые ДНК-связывающие белки, (11) Топоизомераза.
Далее описан синтез отстающей цепи дочерней ДНК (см. Схему репликативной вилки и функции ферментов репликации)
Нагляднее о репликации ДНК см. видео →
5) Непосредственно сразу после расплетания и стабилизации другой нити материнской молекулы к ней присоединяется ДНК-полимераза α (альфа) и в направлении 5’→3′ синтезирует праймер (РНК-затравку) – последовательность РНК на матрице ДНК длиной от 10 до 200 нуклеотидов. После этого фермент удаляется с нити ДНК.
СТРОЕНИЕ РНК
Рибонуклеиновая кислота (РНК) — одна из трёх основных макромолекул (две другие — ДНК и белки), которые содержатся в клетках всех живых организмов.
Последовательность нуклеотидов позволяет РНК кодировать генетическую информацию. Все клеточные организмы используют РНК (мРНК) для программирования синтеза белков.
Затем матричные РНК (мРНК) принимают участие в процессе, называемом трансляцией, т.е. синтеза белка на матрице мРНК при участии рибосом. Другие РНК после транскрипции подвергаются химическим модификациям, и после образования вторичной и третичной структур выполняют функции, зависящие от типа РНК.
Рис. 10. Отличие ДНК от РНК по азотистому основанию: вместо тимина (Т) в РНК представлен урацил (U), который также комплементарен аденину.
ТРАНСКРИПЦИЯ
Транскрипция – это процесс синтеза РНК на матрице ДНК. ДНК раскручивается на одном из участков. На одной из цепей содержится информация, которую необходимо скопировать на молекулу РНК – эта цепь называется кодирующей. Вторая цепь ДНК, комплементарная кодирующей, называется матричной. В процессе транскрипции на матричной цепи в направлении 3’ – 5’ (по цепи ДНК) синтезируется комплементарная ей цепь РНК. Таким образом, создается РНК-копия кодирующей цепи.
Рис. 11. Схематическое изображение транскрипции
Например, если нам дана последовательность кодирующей цепи
3’– ATGTCCTAGCTGCTCG – 5’,
то, по правилу комплементарности, матричная цепь будет нести последовательность
5’– TACAGGATCGACGAGC– 3’,
а синтезируемая с нее РНК – последовательность
3’– AUGUCCUAGCUGCUCG – 5’.
ТРАНСЛЯЦИЯ
Рассмотрим механизм синтеза белка на матрице РНК, а также генетический код и его свойства. Также для наглядности по ниже приведенной ссылке рекомендуем посмотреть небольшое видео о процессах транскрипции и трансляции, происходящих в живой клетке:
Рис. 12. Процесс синтеза белка: ДНК кодирует РНК, РНК кодирует белок
ГЕНЕТИЧЕСКИЙ КОД
Генетический код, общий для большинства про- и эукариот. В таблице приведены все 64 кодона и указаны соответствующие аминокислоты. Порядок оснований — от 5′ к 3′ концу мРНК.
Таблица 1. Стандартный генетический код
Среди триплетов есть 4 специальных последовательности, выполняющих функции «знаков препинания»:
Свойства генетического кода
1. Триплетность. Каждая аминокислота кодируется последовательностью из трех нуклеотидов – триплетом или кодоном.
2. Непрерывность. Между триплетами нет никаких дополнительных нуклеотидов, информация считывается непрерывно.
3. Неперекрываемость. Один нуклеотид не может входить одновременно в два триплета.
4. Однозначность. Один кодон может кодировать только одну аминокислоту.
5. Вырожденность. Одна аминокислота может кодироваться несколькими разными кодонами.
6. Универсальность. Генетический код одинаков для всех живых организмов.
Пример. Нам дана последовательность кодирующей цепи:
3’– CCGATTGCACGTCGATCGTATA– 5’.
Матричная цепь будет иметь последовательность:
5’– GGCTAACGTGCAGCTAGCATAT– 3’.
Теперь «синтезируем» с этой цепи информационную РНК:
3’– CCGAUUGCACGUCGAUCGUAUA– 5’.
Синтез белка идет в направлении 5’ → 3’, следовательно, нам нужно перевернуть последовательность, чтобы «прочитать» генетический код:
5’– AUAUGCUAGCUGCACGUUAGCC– 3’.
Теперь найдем старт-кодон AUG:
5’– AU AUG CUAGCUGCACGUUAGCC– 3’.
Разделим последовательность на триплеты:
Найдем стоп-кодон и согласно таблице генетического кода запишем последовательность аминокислот:
Центральная догма молекулярной биологии звучит следующим образом: информация с ДНК передается на РНК (транскрипция), с РНК – на белок (трансляция). ДНК также может удваиваться путем репликации, и также возможен процесс обратной транскрипции, когда по матрице РНК синтезируется ДНК, но такой процесс в основном характерен для вирусов.
Рис. 13. Центральная догма молекулярной биологии
ГЕНОМ: ГЕНЫ и ХРОМОСОМЫ
Термин «геном» был предложен Г. Винклером в 1920 г. для описания совокупности генов, заключенных в гаплоидном наборе хромосом организмов одного биологического вида. Первоначальный смысл этого термина указывал на то, что понятие генома в отличие от генотипа является генетической характеристикой вида в целом, а не отдельной особи. С развитием молекулярной генетики значение данного термина изменилось. Известно, что ДНК, которая является носителем генетической информации у большинства организмов и, следовательно, составляет основу генома, включает в себя не только гены в современном смысле этого слова. Большая часть ДНК эукариотических клеток представлена некодирующими («избыточными») последовательностями нуклеотидов, которые не заключают в себе информации о белках и нуклеиновых кислотах. Таким образом, основную часть генома любого организма составляет вся ДНК его гаплоидного набора хромосом.
Гены — это участки молекул ДНК, кодирующие полипептиды и молекулы РНК
За последнее столетие наше представление о генах существенно изменилось. Ранее геном называли участок хромосомы, кодирующий или определяющий один признак или фенотипическое (видимое) свойство, например цвет глаз.
В 1940 г. Джордж Бидл и Эдвард Тейтем предложили молекулярное определение гена. Ученые обрабатывали споры гриба Neurospora crassa рентгеновским излучением и другими агентами, вызывающими изменения в последовательности ДНК (мутации), и обнаружили мутантные штаммы гриба, утратившие некоторые специфические ферменты, что в некоторых случаях приводило к нарушению целого метаболического пути. Бидл и Тейтем пришли к выводу, что ген — это участок генетического материала, который определяет или кодирует один фермент. Так появилась гипотеза «один ген — один фермент». Позднее эта концепция была расширена до определения «один ген — один полипептид», поскольку многие гены кодируют белки, не являющиеся ферментами, а полипептид может оказаться субъединицей сложного белкового комплекса.
Современное биохимическое определение гена еще более конкретно. Генами называются все участки ДНК, кодирующие первичную последовательность конечных продуктов, к которым относятся полипептиды или РНК, обладающие структурной или каталитической функцией.
Наряду с генами ДНК содержит и другие последовательности, выполняющие исключительно регуляторную функцию. Регуляторные последовательности могут обозначать начало или конец генов, влиять на транскрипцию или указывать место инициации репликации или рекомбинации. Некоторые гены могут экспрессироваться разными путями, при этом один и тот же участок ДНК служит матрицей для образования разных продуктов.
Мы можем приблизительно рассчитать минимальный размер гена, кодирующего средний белок. Каждая аминокислота в полипептидной цепи кодируется последовательностью из трех нуклеотидов; последовательности этих триплетов (кодонов) соответствуют цепочке аминокислот в полипептиде, который кодируется данным геном. Полипептидная цепь из 350 аминокислотных остатков (цепь средней длины) соответствует последовательности из 1050 п.н. (пар нуклеотидов). Однако многие гены эукариот и некоторые гены прокариот прерываются сегментами ДНК, не несущими информации о белке, и поэтому оказываются значительно длиннее, чем показывает простой расчет.
Сколько генов в одной хромосоме?
ДНК прокариот устроена более просто: их клетки не имеют ядра, поэтому ДНК находится непосредственно в цитоплазме в форме нуклеоида.
Как известно, бактериальные клетки имеют хромосому в виде нити ДНК, уложенной в компактную структуру – нуклеоид. Хромосома прокариота Escherichia coli, чей геном полностью расшифрован, представляет собой кольцевую молекулу ДНК (на самом деле, это не правильный круг, а скорее петля без начала и конца), состоящую из 4 639 675 п.н. В этой последовательности содержится примерно 4300 генов белков и еще 157 генов стабильных молекул РНК. В геноме человека примерно 3,1 млрд пар нуклеотидов, соответствующих почти 29 000 генам, расположенным на 24 разных хромосомах.
Прокариоты (Бактерии).
Бактерия E. coli имеет одну двухцепочечную кольцевую молекулу ДНК. Она состоит из 4 639 675 п.н. и достигает в длину примерно 1,7 мм, что превышает длину самой клетки E. coli приблизительно в 850 раз. Помимо крупной кольцевой хромосомы в составе нуклеоида многие бактерии содержат одну или несколько маленьких кольцевых молекул ДНК, свободно располагающихся в цитозоле. Такие внехромосомные элементы называют плазмидами (рис. 16).
Большинство плазмид состоит всего из нескольких тысяч пар нуклеотидов, некоторые содержат более 10000 п. н. Они несут генетическую информацию и реплицируются с образованием дочерних плазмид, которые попадают в дочерние клетки в процессе деления родительской клетки. Плазмиды обнаружены не только в бактериях, но также в дрожжах и других грибах. Во многих случаях плазмиды не дают никаких преимуществ клеткам-хозяевам, и их единственная задача — независимое воспроизведение. Однако некоторые плазмиды несут полезные для хозяина гены. Например, содержащиеся в плазмидах гены могут придавать клеткам бактерий устойчивость к антибактериальным агентам. Плазмиды, несущие ген β-лактамазы, обеспечивают устойчивость к β-лактамным антибиотикам, таким как пенициллин и амоксициллин. Плазмиды могут переходить от клеток, устойчивых к антибиотикам, к другим клеткам того же или другого вида бактерий, в результате чего эти клетки также становятся резистентными. Интенсивное применение антибиотиков является мощным селективным фактором, способствующим распространению плазмид, кодирующих устойчивость к антибиотикам (а также транспозонов, которые кодируют аналогичные гены) среди болезнетворных бактерий, и приводит к появлению бактериальных штаммов с устойчивостью к нескольким антибиотикам. Врачи начинают понимать опасность широкого использования антибиотиков и назначают их только в случае острой необходимости. По аналогичным причинам ограничивается широкое использование антибиотиков для лечения сельскохозяйственных животных.
Эукариоты.
Таблица 2. ДНК, гены и хромосомы некоторых организмов
Анализ Генетического кода I
Иллюстрация melmagazine.com (Source: melmagazine.com/wp-content/uploads/2019/11/DNA-1280×533.jpg)
В настоящее время для информационного обмена широко используются сети общего доступа с каналами, не защищенными от нарушителя. Обмен сообщениями в таких связных и компьютерных сетях пользователи вынуждены защищать самостоятельно. Так как сами каналы передачи сообщений пользователь защитить не может, он защищает сообщение.
Что в сообщении защищается? Во-первых, синтаксис (целостность) с этой целью используется кодология (кодирование и анализ кодов), во-вторых, семантика (конфиденциальность) для чего используются криптология (криптография и криптографический анализ), в-третьих, косвенно нарушителю можно ограничить доступность сообщения путем скрытия факта его передачи для чего используется стеганология (стеганография и стеганоанализ).
Перечисленные возможности теоретически и практически обеспечены в разной мере, и хотя каждое направление развивается достаточно длительное время, они еще далеки от завершения. В предлагаемой работе коснемся только одного частного вопроса — анализа кодов сообщений.
Введение
В качестве объекта анализа выбран генетический код (ГК). С любопытным примером использования ГК в области информационной защиты (по-видимому непрофессиональной и потому не успешной) можно познакомиться здесь.
В теории кодирования могут быть выделены два важных направления: кодирование источника информации и канальное кодирование. Первое из них реализуется, как правило, передающей стороной и имеет целью — устранение избыточности сообщений (пример, код Морзе), целью второго является — обнаружение и устранение ошибок в сообщениях. До появления корректирующих кодов задача устранения ошибок решалась повторной передачей искаженного фрагмента сообщения по запросу приемной стороны.
Здесь отметим факт невозможности правильного расшифрования приемной стороной шифрграммы, если в ее тексте возникли ошибки. Шифры не позволяют ни обнаруживать ошибки, ни тем более их исправлять. По этой причине на передающей стороне системы связи сообщение-шифрграмма кодируется корректирующим кодом, а на приемной стороне декодер в полученном сообщении обнаруживает (если они есть) и исправляет ошибки.
После этого вступает в дело криптосистема и легитимному получателю предоставляется расшифрованное сообщение. Таковы в общих чертах положения функционирования сетей, обменивающихся защищенными сообщениями.
В этой работе займемся подробно анализом очень важного Генетического кода, который создан не разумом человека, а самой природой (редкий случай).
История одного открытия и Нобелевская премия
Зададимся вопросом, как природой на уровне генетики и метаболизма организмов (клеток) реализованы такие положения информационного обмена в жизнедеятельности видов и их отдельных представителей?
Научному миру еще до Второй мировой войны было известно, что у живых организмов передача от поколения к поколению наследственных признаков осуществляется через относительно простые химические единицы (гены), включающие огромное количество информации, необходимой для продолжения и воспроизводства жизни.
Все гены (не являются белками) связываются в цепочки (хромосомы) и материализуются в дезоксирибонуклеиновой кислоте (ДНК). У специалистов не было ясности в том, как все происходит и как устроена сама ДНК.
Молодые исследователи физик англичанин Ф. Крик и биолог американец Дж. Уотсон в 1953 году (25.4) опубликовали в журнале Nature статью «Структура дезоксирибонуклеиновой кислоты». На момент начала их работы 1949 г. Джеймсу Уотсону было 23 года, Френсису Крику и Морису Уилкинсу по 33.
В статье авторы описали модель пространственной структуры ДНК в виде двойной спирали, две нити которой закручивалась вправо. Сами нити при этом оказывались связанными поперечными «ступенями», образованными из нуклеотидов.
Определение. Нуклеотиды — соединения, состоящие из сахара, азотсодержащих оснований (пурина или пиримидина) и фосфорной кислоты. Нуклеотиды являются «строительными блоками» для ДНК и РНК.
Эта спираль ДНК – носитель генетического кода – кода наследственности признаков организмов животных и растений. Это была совершенно необычная новая работа о строении и свойствах молекулы дезоксирибонуклеиновой кислоты.
Модель ДНК молодых авторов получила подтверждение при сопоставлении ее с рентгеновской дифракционной картиной кристаллической структуры ДНК английского биофизика Мориса Уилкинса. Позднее был открыт генетический код, содержащий и передающий информацию о синтезе структуры и состава белков – основных составляющих каждой клетки живых организмов, реализующей клеточный цикл.
Определение. Клеточный цикл — правильное чередование периодов относительного покоя с периодами деления клетки.
В этом же году позднее авторы опубликовали еще одну статью, в которой описывался возможный механизм копирования ДНК путем матричного синтеза при делении живых клеток. Двойная спираль ДНК уподоблялась «замку молния».
Каждая нить спирали после «расстегивания замка» и разведения нитей становилась синтезирующей матрицей и достраивалась второй нитью материалом из цитоплазмы клетки по принципу комплементарности до полной ДНК. Там же говорилось, что определенная последовательность оснований (кодонов, триплетов) является кодом, который содержит генетическую информацию.
Идея математизации кода высказывалась впервые Г. Гамовым в статье 1954 года как проблема перевода слов из четырехбуквенного алфавита (системы) в слова двадцатибуквенного алфавита. Он представил проблему кодирования жизненных явлений не как биохимическую, а как комбинаторную математическую задачу. Предварительные длительные усилия авторов этого труда хорошо описаны в книге Д. Уотсона «Нить жизни».
В 1962 году Уотсон, Крик и Уилкинс получили Нобелевскую премию по физиологии и медицине «за открытия в области молекулярной структуры нуклеиновых кислот и за определение их роли для пере-дачи информации в живой материи».
Они располагали информацией о следующих фактах:
В гипотезах и предположениях недостатка не было, но кто-то должен проверять их истинность.
Перекрывающиеся коды (один нуклеотид-буква входит в состав более чем одного кодона): треугольный, мажорно-минорный и последовательный, предложены Гамовым с коллегами;
неперекрывающиеся коды: комбинационный Гамова и Ичаса, «код без запятых» Крика, Гриффита и Оргела. В комбинационном коде аминокислоты (20) кодируются триплетами из 4-х нуклеотидов, но важен не их порядок, а только состав: триплеты ТТА, ТАТ, АТТ кодируют в белках одну и ту же аминокислоту.
Код без запятых объяснял, как выбирается «рамка считывания». Такое «скользящее окно» вдоль нити ДНК, где буквы следуют, друг за другом без разделителей (запятых) их на слова предполагает, что слова все-таки как-то различаются. Согласно модели Ф. Крика делалось допущение: все триплеты разделяются на осмысленные, т. е. соответствующие конкретным аминокислотам, и не имеющие смысла.
Если только осмысленные триплеты формируют ДНК, то в другой «рамке считывания» такие триплеты окажутся не имеющими смысла. Авторы этого кода показали, что можно подобрать триплеты, удовлетворяющие таким требованиям и что их ровно 20. Конечно, полной уверенности в своей правоте у авторов не было.
Действительно, после 1960 года было показано, что кодоны, считавшиеся Криком бессмысленными, в пробирке реализовывали белковый синтез, а к 1965 году был установлен смысл всех 64 кодонов-триплетов. Выяснилось также, что ряд аминокислот кодируется двумя, тремя, четырьмя и даже шестью разными триплетами, т. е. имеет место определенная избыточность, назначение которой еще предстоит определить.
Генетический код жизни. Наследственная информация
Определение. Генетический код – множество слов, задающих способ кодирования цепочками нуклеотидов (букв алфавита А, G, C, T), последовательности аминокислот синтеза белков, свойственных всем живым организмам. Цепочки триплетов (кодовых слов) образуют хромосомы – носители наследственной информации. Каждому виду живых организмов соответствует свой хромосомный набор. Этот способ кодирования универсален и реализуется в каждой клетке растительного и животного организма при ее делении.
Для кодирования каждой из 20 видов канонических аминокислот, из которых строятся далее практически все белки и терминального сигнала «стоп» оказывается достаточно набора из трех нуклеотидов (букв), называемого триплетом (кодоном). Последовательность кодонов формирует в хромосомной нити ген и определяет последовательность аминокислот в полипептидной цепи белка, кодируемого этим геном. Существовала концепция «один ген – один фермент».
Классическое представление информации (линейность ее записи) – это тексты в широком понимании (речь, письма, книги, изображения, фильмы, музыка и т. п.) этого слова в некотором естественном языке (ЕЯ). Язык включает обширный словарь (лексику), а если ЕЯ кроме устной речи имеет письменность, то и алфавит с грамматикой.
Для сохранения информации в течение длительного времени и передачи ее копий необходимы прочная, хорошо защищенная память и письменность. Наследственная информация живых организмов записана ЕЯ природы в длинных текстах словами в некотором «молекулярном» алфавите, которые хранятся в форме хромосом в ядрах всех клеток живых организмов.
Процессы и пути переноса информации, записанной на естественных её носителях-молекулах, сформулированы Ф. Криком (1958 г.) в форме центральной догмы молекулярной биологии. Три основных процесса обеспечивают управление всеми остальными процессами функционирования клетки и жизни организмов в целом.
Эти процессы: репликация, транскрипция и трансляция. Далее о них будет сказано более подробно. Информация в организмах передается только в одном направлении от нуклеиновых кислот (ДНК → РНК →белок) к белку, обратной передачи не существует. Возможны особые случаи ДНК → белок, РНК→ РНК, РНК → ДНК.
Чтение информации вдоль молекулярных цепочек допустимо только в одном прямом направлении. Используется понятие «рамка считывания».
Определение. Рамкой считывания (открытой) называется последовательность неперекрывающихся кодонов, способная синтезировать белок, начинающаяся со старт-кодона и завершающаяся стоп-кодоном. Рамка определяется самым первым триплетом, с которого начинается трансляция.
Для начала трансляции старт-кодона недостаточно, необходим ещё инициационный кодон (их три: AUG, GUG, UUG). После его считывания трансляция идет путем последовательного считывания кодонов рибосомальной рРНК и присоединения аминокислот друг к другу рибосомой до достижения стоп-кодона.
Кодоны в ходе трансляции «читаются» всегда с некоторого стартового инициирующего символа (AUG) и не перекрываются. Чтение после старта триплет за триплетом идет до стоп-кодона завершения синтеза белковой полипептидной цепи.
Эти факты обобщаются в таблице способов передачи генетической информации.
Таблица 1 – Центральная догма молекулярной биологии
История изучения текстов наследственности организмов, их осмысления, длительная, богатая открытиями, достижениями, заблуждениями и разочарованиями. Перечень событий истории постижения (познания) текстов природы представляет несомненный интерес, как для науки, так и для каждого отдельного человека.
Слова текстов имеют очень большую длину, но алфавит письменности «ЕЯ природы» содержит всего четыре буквы – это молекулярные основания: в РНК это А (аденин), С (цитозин), G (гуанин), U (урацил) (в ДНК урацил заменяется на Т (тимин)). Язык живой природы – это язык молекул.
Биологами установлено, что каждое слово текста наследственности образовано полимерной молекулой ДНК (дезоксирибонуклеиновой кислоты, открытой в 1868 г. врачом И. Ф. Мишером), построенной из 4-х оснований (нуклеотидов – от nuclear — ядерный).
Основания скрепляются (соединяются) между собой в пары, А ←→ Т, Т←→ А, G ←→ C, С ←→ G особыми водородными связями, реализующими принцип дополнительности (комплементарности). Эти факты устанавливались в разное время, разными учеными и методами многих наук (физики, химии, биологии, цитологии, генетики и др.). Сложности на пути познания этого ЕЯ встречались постоянно.
Молекулы ДНК не кристаллизовались, но когда это удалось сделать, то задача установления структуры ДНК свелась к решению обратной задачи рентгеноструктурного анализа (преобразованием Фурье дифракционной картины кристалла, созданной на экране рентгеновскими лучами).
На рассчитанной и собранной вручную Дж. Уотсоном и Фрэнсисом Криком в 1953 году модели аналогично детской игре «LEGO», где элементами являлись молекулярные основания и очень точно выдерживались межатомные расстояния и углы разворота, была воспроизведена структура хромосомы в большом масштабе.
Эта модель практически подтвердила многообразные гипотезы теоретиков и убедительно доказала отсутствие расхождений с практическими экспериментами и результатами рентгеноструктурного анализа кристаллической ДНК.
Основные детальные данные о химическом строении ДНК и числовые характеристики модели были получены Розалиндой Франклин и М. Уилкинсом ранее 1953 г. в лаборатории рентгеноструктурного анализа. Конфликт ученых описан в романе «Одиночество в сети» Януша Леона Вишневского.
Наличие наглядной структуры ДНК и ее количественных характеристик дало толчок для развития генетики и всех бионаук, из которого возникла идея проекта «Геном человека» 2000 г. Уотсон стал первым руководителем этого проекта, в рамках проекта был полностью расшифрован хромосомный набор человека Homo sapiens. Полная генетическая карта 1-й хромосомы завершена в 2006. Карта содержит 3141 ген и 991 псевдоген.
С позиций математики четырем буквам алфавита можно приписать четыре элемента конечного расширенного поля Галуа GF(2 2 ) = (0, 1, α, β), операции с которыми выполняются по модулю неприводимого многочлена р(х) = х 2 + х + 1. Тогда α + β = 1, α∙β = 1 и сопоставление элементов поля буквам принимает вид
, а дополнительный (комплементарный) нуклеотид вычисляется по правилу ¬х → х + 1, откуда Т → А + 1, С → G + 1.
Структурно модель ДНК представляет две эквидистантные полимерные цепи попарно соединенных нуклеотидов (по принципу веревочной лестницы) и закрученных в правую двойную спираль. Ниже по тексту вертикально выписанные пары букв соответствуют ступеням «лестницы»:
Т А G G T T C G Т …
A T C C A A G C A …
Две цепи повторяют последовательность букв, но начало одной расположено напротив конца другой. Информация в молекулах ДНК записывается с большой степенью избыточности, что, конечно, обеспечивает высокий уровень надежности при считывании информации и ее копировании (репликации: ДНК → ДНК). К исходному слову приписывается еще одно, но в дополнительном коде.
Все хромосомы содержат в своем составе гены и в каждой клетке содержатся в очень малом объеме (в ядре клетки) и короткие и очень длинные. Расстояние между нитями ДНК составляет 2 нм, между «ступеньками» – 0.31 нм, один полный оборот «спирали» через каждые 10 пар. Суммарная длина всех ДНК, вытянутых в одну нить достигает 2м. Наследственная информация человека записана в 23 хромосомах. Длина хромосомы порядка 10 9 нуклеотидов, а диаметр ядра меньше микрометра. Таким образом, ДНК в клетке компактизована.
Определение. Ген (греч.γενοζ – род). Структурная и функциональная единица наследственности живых организмов. Гены (точнее аллели) определяют наследственные признаки организмов, передающиеся от родителей потомству при размножении.
В словах ДНК можно выделить и рассматривать отдельные части-подслова (гены), которые несут целостную информацию о строении одной молекулы белка или одной молекулы РНК. Кроме того, гены характеризуются регуляторными последовательностями (промоторами).
Промоторы могут быть расположены как в непосредственной близости от открытой «рамки считывания», кодирующей белок или начала последовательности РНК, так и на расстоянии многих миллионов пар оснований (нуклеотидов), например, в случаях с энхансерами, инсуляторами и супрессорами.
Каждый ген предназначен и отвечает за создание определенного белка, необходимого для жизнедеятельности организма. Понятием генотип обозначается наследственная конституция гамет (половых клеток) и зигот (соматических клеток) в отличие от фенотипа, описывающего благоприобретенные признаки, которые по наследству не передаются.
Блоковые коды
Код многозначное понятие. Кодом, прежде всего, можно назвать множество кодовых слов, образующих собственно сам код. Именно такие слова распознает декодер на приемной стороне при передаче сообщений, а на передающей — их формирует кодер.
При формировании кодовых слов используется однозначное отображение конечного упорядоченного множества символов, принадлежащих некоторому конечному алфавиту, на иное, не обязательно упорядоченное, как правило, более обширное множество символов для кодирования передачи, хранения или преобразования информации
Перечислим свойства рассматриваемого генетического кода (ГК):
Г. Гамовым было высказано предположение о триплетности кода. Поскольку речь идет о 4-х нуклеотидах, образующих алфавит, и о 20 аминокислотах, используемых при синтезе белков, каждая из них должна в качестве прообраза иметь одно (или более) синтезирующее ее слово.
Свойство связано с избыточностью. Состав каждого слова из 64 возможных был установлен лишь в 1965 году на основе многочисленных опытов. Выяснилось, что избыточность числа слов при синтезе некоторых белков используется природой для надежности правильности считывания информации. В итоге получилось, что каждая аминокислота кодируется разным числом триплетов (кодонов). Свойство кода назвали вырожденностью.
Таблица 2 — Количественные соотношения триплетов и аминокислот
Рассмотрим два дискретных множества Х и n, содержащие соответственно |X| и |n| элементов и отображение φ: n → Х. При представлении произвольных отображений множеств словами в алфавите Х получается множество Х n слов, каждое длиной n символов из имеющихся q = |X|, которые образуют алфавит текстовых сообщений. Удобно все слова Х n расположить в лексикографическом порядке в общий список.
Нашей целью в этой части работы является формирование кода, обеспечивающего кодирование (преобразование) передаваемых данных в форму удобную для передачи в пространстве и времени и трансляцию (перевод) с одного языка на другой понятный получателю сообщения.
Формирование кода предполагает выбор алфавита, определение регулярности, а при выборе регулярного кода, определение длины кодового слова, определение количества кодовых слов, определение побуквенного состава каждого слова.
Таблица 3 — Генетический код состоит из 64 кодовых слов из 3-х букв каждое
Таблица 4 — Обратные значения кодовой последовательности триплетов РНК
Дополнительные свойства кода, например, код не должен иметь запятой, определяются более жесткими требованиями к названным параметрам кода. Код без запятой должен иметь слова с максимальным периодом. Такие требования ориентированы на удобство последующего синтеза кодека. С этими положениями синтеза кода тесно связаны вопросы кодирования информации и ее декодирования.
Анализ кода
Совсем по-другому звучит задача анализа кода, когда код уже существует и используется, но о нем самом практически мало что известно. Кодированные сообщения доступны для обозрения и изучения, но они столь разнообразны и многочисленны, что принцип их создания не просматривается даже при весьма обширном их анализе.
Собственно, сама система кодирования также доступна для наблюдения и изучения, но уровень сложности ее построения и функционирования не позволяет получить полное качественное и достоверное описание.
Информация (данные) представляет собой сообщение, т.е. цепочку символов алфавита, которая с некоторой стартовой позиции может быть разбита на отрезки (блоки) длиной n символов, и каждый такой отрезок представляет собой кодовое слово. Код в этом случае блоковый.
На приемной стороне канала передачи сообщения получатель должен иметь возможность правильно разделять непрерывную цепочку символов сообщения на отдельные слова. Использование разделителей слов (запятой) нежелательно, так как требует ресурсов.
Синхронизация. Без выполнения синхронизации правильная трансляция сообщения невозможна. Отсюда вытекает одно из требований к формируемому коду – код должен быть устроен так, чтобы синхронизация обеспечивалась однозначно средствами (свойствами) самого кода и приемного устройства информации.
Определение. Процесс установления позиции, содержащей стартовый (начальный) символ кодового слова, называется синхронизацией.
Задача синхронизации просто решается, если в алфавите используется специальный символ-разделитель слов, например, запятая. Рамка считывания очередного кодового слова устанавливается непосредственно за разделителем.
Такой разделитель удобен, но нежелателен по нескольким причинам.
Для лучшей различимости слов кода они в полном списке возможных слов должны быть удалены одно от другого на некоторое расстояние, т.е. различаться составом значений символов, как векторы векторного пространства компонентами.
Следовательно, кодовыми словами могут быть не все и не любые слова множества Х n , а только лишь некоторое их подмножество D є Х n . Выбор символьного состава слов кода и представляет основную задачу его формирования, так как именно состав слов кода должен обеспечивать удовлетворение сформулированным требованиям к коду. Таким образом, будем далее рассматривать код без запятой.
Синхронизация кода без запятой. Покажем здесь, как может быть обеспечена однозначность синхронизации кода без запятой. Выберем два триплета кодовых слова вида х = (х1, х2, …, хn) и у = (у1, у2, …, уn). Образуем их конкатенацию х||у = (х1, х2, …, хn, у1, у2, …, уn). Эта конкатенация из двух слов позволяет породить еще n – 1 слово множества Х n путем многократных циклических сдвигов на одну позицию влево и выделения первых n символов сдвинутой последовательности. Введем важное понятие перекрытия пары слов.
Определение. При циклических сдвигах символов на шаг получаются слова вида (х2, …, хn, у1), (х3, …, хn, у1, у2)…( хn, у1,…, уn-2, уn-1), которые называются перекрытиями пары слов х и у.
Если все перекрытия в конкатенации для любой пары кодовых слов не являются кодовыми словами, то механизм приемной стороны (декодер) канала передачи информации имеет возможность устанавливать однозначно стартовую позицию. Это возможно при наличии у декодера списка D всех кодовых слов и возможности сопоставления их со считываемыми n символами из принятого сообщения.
Покажем, как это осуществляется. Пусть в принятой последовательности символов выбран и зафиксирован некоторый символ. Отсчитав n символов от фиксированного, декодер сопоставляет слово, которое получилось, со словами кодового списка. Если имеет место совпадение с одним из слов кодового списка, то синхронизация установлена. Фиксированный символ и его позиция стартовые.
Если совпадения нет ни с одним из слов списка кода, т. е. попали на слово-перекрытие, то это означает, что стартовая позиция расположена левее фиксированной позиции.
Сдвигаемся влево на одну позицию от фиксированной и повторяем действия предыдущего шага до тех пор, пока не получим на некотором шаге совпадения с одним из кодовых слов. Этот процесс обязательно имеет успешное завершение в правильной стартовой позиции, т. е. синхронизация в среднем устанавливается за число n/2 шагов.
Определение. Блоковым кодом без разделителя (запятой) называется подмножество D є Х n слов длины n в алфавите Х таких, что для любых двух кодовых слов х, у єD все перекрытия для них не являются кодовыми словами.
Мы уже установили, что такой код обеспечивает правильную синхронизацию в длинных цепочках кодовых слов без разделителей между ними. Какие же слова из множества Х n включаются в подмножество D є Х n ? Если мощность множества Х n делится на целые числа, то мощность D может быть одним из таких делителей (теорема Лагранжа о группах) и код при этом называется групповым блоковым кодом без запятой.
Состав символов в словах кода пока остается не установленным, так же, как и количество слов в D. Очевидно, что выбор конкретного подмножества D из Х n имеет много вариантов (сочетаний из Х n по D), из которых только немногие или возможно единственный удовлетворяет всем требованиям к коду без запятой. Нами рассмотрено одно из важных требований о перекрытиях, и это свойство слов кода может быть использовано в качестве фильтра для отсеивания непригодных вариантов при выборе D.
Перейдем к решению вопроса о числе слов в формируемом коде.
Мощность кода без запятой. Будем отыскивать наибольшее из возможных число слов в коде D, которое обозначим символом |D| = Wn(q). Точное значение получить не удается, но оценку сверху для количества слов получить возможно, используя понятие периода слова. Обозначим символом Т k х циклический сдвиг слова длиной n на k шагов, k k х = х и d ≤ n, d | n. Слова максимального периода d = n называются полноцикловыми (основными). Код без запятой включает в свой состав только полноцикловые слова.
Действительно, пусть кодовое слово х = (х1, х2, х3, х1, х2, х3 ) имеет период d