Компиляция что это программирование

Что такое компиляция в программировании?

Компилируется ли язык программирования или интерпретируется, на самом деле это не зависит от природы языка программирования. Любой язык программирования может интерпретироваться так называемым интерпретатором или компилироваться с помощью так называемого компилятора.

Рабочий цикл программы

При использовании любого языка программирования существует определенный рабочий цикл создания кода. Вы пишете его, запускаете, находите ошибки и отлаживаете. Таким образом, вы переписываете и дописываете программу, проверяете ее. То, о чем пойдет речь в этой статье, это « запускаемая » часть программы.

Когда пишете программу, вы хотите, чтобы ее инструкции работали на компьютере. Компьютер обрабатывает информацию с помощью процессора, который поэтапно выполняет инструкции, закодированные в двоичном формате. Как из выражения « a = 3; » получить закодированные инструкции, которые процессор может понять?

Мы делаем это с помощью компиляции. Существует специальные приложения, известные как компиляторы. Они принимают программу, которую вы написали. Затем анализируют и разбирают каждую часть программы и строят машинный код для процессора. Часто его также называют объектным кодом.

На одном из этапов процесса обработки задействуется компоновщик, принимающий части программы, которые отдельно были преобразованы в объектный код, и связывает их в один исполняемый файл. Вот схема, описывающая данный процесс:

Конечным элементом этого процесса является исполняемый файл. Когда вы запускаете или сообщаете компьютеру, что это исполняемый файл, он берет первую же инструкцию из него, не фильтрует, не преобразует, а сразу запускает программу и выполняет ее без какого-либо дополнительного преобразования. Это ключевая характеристика процесса компиляции — его результат должен быть исполняемым файлом, не требующим дополнительного перевода, чтобы процессор мог начать выполнять первую инструкцию и все следующие за ней.

Первые компиляторы были написаны непосредственно через машинный код или с использованием ассемблеров. Но цель компилятора очевидна: перевести программу в исполняемый машинный код для конкретного процессора.

Не все языки программирования учитывают это в своей концепции. Например, Java предназначался для запуска в « интерпретирующей » среде, а Python всегда должен интерпретироваться.

Интерпретация программы

Альтернативой компиляции является интерпретация. Чем отличаются компиляторы и интерпретаторы? Основная разница между компилятором и интерпретатором заключается в том, как они работают. Компилятор берет всю программу и преобразует ее в машинный код, который понимает процессор.

Интерпретатор — это исполняемый файл, который поэтапно читает программу, а затем обрабатывает, сразу выполняя ее инструкции.

Другими словами, программа-интерпретатор выполняет программу поэтапно как часть собственного исполняемого файла. Объектный код не передается процессору, интерпретатор сам является объектным кодом, построенным таким образом, чтобы его можно было вызвать в определенное время.

Это ломает рабочий цикл, который был приведен на диаграмме выше. Теперь у нас есть новая диаграмма:

На ней мы видим, что в отличии от компилятора, интерпретатор всегда должен быть под рукой, чтобы мы могли вызвать его и запустить нашу программу. В некотором смысле интерпретатор становится процессором. Программы, написанные для интерпретации, называются « скриптами », потому что они являются сценариями действий для другой программы, а не прямым машинным кодом.

Природа интерпретатора

Интерпретаторы могут создаваться по-разному. Существуют интерпретаторы, которые читают исходную программу и не выполняют дополнительной обработки. Они просто берут определенное количество строк кода за раз и выполняют его.

Некоторые интерпретаторы выполняют собственную компиляцию, но обычно преобразуют программу байтовый код, который имеет смысл только для интерпретатора. Это своего рода псевдо машинный язык, который понимает только интерпретатор.

Такой код быстрее обрабатывается, и его проще написать для исполнителя ( части интерпретатора, которая исполняет ), который считывает байтовый код, а не код источника.

Есть интерпретаторы, для которых этот вид байтового кода имеет более важное значение. Например, язык программирования Java « запускается » на так называемой виртуальной машине. Она является исполняемым кодом или частью программы, которая считывает конкретный байтовый код и эмулирует работу процессора. Обрабатывая байтовый код так, как если бы процессор компьютера был виртуальным процессором.

За и против

Основным аргументом за использование процесса компиляции является скорость. Возможность компилировать любой программный код в машинный, который может понять процессор ПК, исключает использование промежуточного кода. Можно запускать программы без дополнительных шагов, тем самым увеличивая скорость обработки кода.

Но наибольшим недостатком компиляции является специфичность. Когда компилируете программу для работы на конкретном процессоре, вы создаете объектный код, который будет работать только на этом процессоре. Если хотите, чтобы программа запускалась на другой машине, вам придется перекомпилировать программу под этот процессор. А перекомпиляция может быть довольно сложной, если процессор имеет ограничения или особенности, не присущие первому. А также может вызывать ошибки компиляции.

Основное преимущество интерпретации — гибкость. Можно не только запускать интерпретируемую программу на любом процессоре или платформе, для которых интерпретатор был скомпилирован. Написанный интерпретатор может предложить дополнительную гибкость. В определенном смысле интерпретаторы проще понять и написать, чем компиляторы.

С помощью интерпретатора проще добавить дополнительные функции, реализовать такие элементы, как сборщики мусора, а не расширять язык.

Другим преимуществом интерпретаторов является то, что их проще переписать или перекомпилировать для новых платформ.

Написание компилятора для процессора требует добавления множества функций, или полной переработки. Но как только компилятор написан, можно скомпилировать кучу интерпретаторов и на выходе мы имеем перспективный язык. Не нужно повторно внедрять интерпретатор на базовом уровне для другого процессора.

Самым большим недостатком интерпретаторов является скорость. Для каждой программы выполняется так много переводов, фильтраций, что это приводит к замедлению работы и мешает выполнению программного кода.

Это проблема для конкретных real-time приложений, таких как игры с высоким разрешением и симуляцией. Некоторые интерпретаторы содержат компоненты, которые называются just-in-time компиляторами ( JIT ). Они компилируют программу непосредственно перед ее исполнением. Это специальные программы, вынесенные за рамки интерпретатора. Но поскольку процессоры становятся все более мощными, данная проблема становится менее актуальной.

Заключение

Для меня не имеет значения, скомпилировано что-то или интерпретировано, если оно может выполнить задачу эффективно.

Сообщите мне, что бы вы предпочли: интерпретацию или компиляцию? Спасибо за уделенное время!

Пожалуйста, оставьте ваши комментарии по текущей теме статьи. Мы крайне благодарны вам за ваши комментарии, дизлайки, подписки, отклики, лайки!

Пожалуйста, оставляйте свои отзывы по текущей теме статьи. За комментарии, дизлайки, подписки, отклики, лайки огромное вам спасибо!

Источник

Введение в компиляцию. Структура компилятора. Процесс компиляции.

Язык программирования – это искуственный язык, созданный для взаимодействия с машиной, в частности, с компьютером. ЯП используются для написания программ, которые управляют машиной и/или выражают алгоритмы.

Первые ЯП были созданы задолго до появления компьютеров и управляли поведением, скажем, самоиграющих пианино или автоматических ткацких станков.

Многие ЯП имеют императивную форму, т.е. описывают последовательность операций. Другие могут иметь декларативную форму, т.е. описывают результат, а не то, как его получить.

Некоторые языки определяются стандартом (C,C++,Haskell, и др.). Другие не имеют формального описания, и наиболее широко распространенная реализация используется в качестве эталона.

Описание ЯП обычно делится на две части: синтаксис, т.е. форма, и семантика, т.е. значение.

Синтаксис в свою очередь подразделяется на лексику и грамматику.

Лексика определяет какие “слова” могут быть в языке. Это включает названия переменных, функций, числовые константы, строки, и т.п., а так же управляющие символы языка. Грамматика определяет каким образом эти “слова” комбинируются в более сложные выражения.

Не все синтаксически корректные программы являются семантически корректными. Например:

Семантика же подразделяется на статическую, динамическую, и систему типов.

определяет статические свойства языка, выходящие за рамки синтаксиса. Например, статическая семантика может определять, что все идентификаторы должны быть определены перед использованием, или что вызов функции должен принимать столько же аргументов, сколько указано в её определении (ни то ни другое не является, вообще говоря, обязательным)

определяет стратегию выполнения программы. Она определяет, каким образом исполняются инструкции, порядок их исполнения, значение управляющих структур и т.д.

определяет каким образом ЯП классифицирует значения и выражения, как эти типы взаимодействуют и каким образом ЯП может манипулировать ими. Система типов является практическим приложением теории категорий. Цель системы типов – проверка программы на корректность (до какой-то степени). Любая система типов, отвергая некорректные программы, будет так же отвергать некоторый процент корректных (хотя вероятно необычных) программ. Чтобы обойти это ограничение, ЯП обычно имеют некие механизмы для выхода из ограничений системы типов. В большинстве случаев, указание корректных типов ложится на совесть программиста. Однако некоторые ЯП (обычно функциональные) умеют выводить типы исходя из семантики, и таким образом освобождают программиста от необходимости явно указывать типы.

Динамическая семантика может определяться различными способами. Наиболее распространёнными являются операционная семантика и денотационная семантика.

Операционная семантика способ описания семантики, при котором для описания поведения используется набор аксиоматических определений синтаксических конструкций языка и логических правил вывода (вида “если, то”). Выделяют операционную семантику с малым шагом, когда подробно определяется каждый шаг вычисления для выражений, и операционную семантику с большим шагом, когда определяется конечный результат выражений. Денотационная семантика способ описания семантики, при котором выражениям языка ставятся в соответствие какие-то математические объекты с априори известной семантикой, т.е. смысл языковых конструкций ставится в соответствие конструкциям математическим.

Введение в компиляцию

Компиляция – это трансляция (преобразование) текста программы, написанного на одном языке (исходном), в эквивалентный (сохраняющий семантику) текст на другом языке (целевом).

Компилятор – это программа, читающая текст программы на исходном языке и компилирующая его.

Альтернативным подходом является интерпретация, т.е. непосредственное выполнение операций, указанных в исходном тексте программы.

Интерпретатор – программа, читающая исходный текст, и интерпретирующая его.

Кроме того, компилятор может производить статический анализ исходного кода программы и сообщать об ошибках и выводить предупреждения о потенциальных проблемах.

Целевой язык может быть машинным языком, в таком случае результат работы компилятора может быть выполнен исполнительным устройством непосредственно. Целевой язык может быть также другим языком программирования (транс-компиляция) или машинным языком для некой виртуальной машины (такой язык обычно называется байт-кодом). Байт-код в свою очередь выполняется программой-интерпретатором байт-кода.

Условная схема компиляции

Условная схема интерпретации

Условная схема компиляции в байт-код

Вообще говоря, для создания исполняемой программы на целевом языке могут потребоваться другие программы и компоненты.

Структура компилятора. Процесс компиляции

Процесс компиляции обычно разделяется на две фазы: анализ и синтез.

В фазе анализа происходит чтение исходного текста программы, затем этот текст разбивается на элементарные блоки, на них накладывается грамматическая структура, и создаётся промежуточное представление исходного текста и собирается другая информация об исходном тексте. На этой фазе так же возможен статический анализ исходного текста.

В фазе синтеза, на основе промежуточного представления и прочей информации, строится представление исходной программы в целевом коде. На этой фазе так же возможны преобразования целевого кода, называемые оптимизациями.

Кроме того, между анализом и синтезом может находиться фаза преобразований промежуточного кода, называемая машинно-независимой оптимизацией.

Лексический анализ

Первая фаза компиляции называется лексическим анализом или сканированием.

Лексический анализатор соответственно так же называется лексером или сканером.

Лексический анализатор сканирует входной поток символов (исходного текста программы) и выделяет значащие последовательности символов, называемые лексемами.

Для каждой лексемы анализатор выводит токен, представляющий из себя комбинацию абстрактного символа (названия типа токена) и произвольного набора атрибутов. Часто в качестве “набора атрибутов” выступает ссылка в глобальную таблицу, называемую таблицей символов.

Синтаксический анализ

Вторая фаза – синтаксический анализ или разбор, парсинг (от англ. parsing).

Синтаксический анализатор соответственно называется так же парсером.

Парсер строит из токенов, полученных от лексера, древовидное промежуточное представление (часто неявно), отражающее грамматическую структуру исходного кода. Примером такого представления является синтаксическое дерево, где узлы представляют операцию, дочерние узлы – аргументы этой операции.

Например, синтаксическое дерево арифметического выражения \(1+2*3\) может иметь вид:

Семантический анализ

Семантический анализатор использует синтаксическое дерево для проверки исходной программы на корректность.

На этом же этапе происходит проверка типов, и информация о типах переменных записывается в атрибуты соответствующих узлов синтаксического дерева.

Если спецификация языка разрешает неявное приведение типов, на этом этапе синтаксическое дерево может быть переписано с добавлением явных операций приведения типов.

Генерация промежуточного кода

В процессе компиляции, могут создаваться несколько промежуточных представлений, в частности, синтаксическое дерево.

Как правило, после завершения синтаксического и семантического анализа, значительная часть высокоуровневой информации (типы, названия переменных, многие управляющие конструкции и т.п.) далее не требуется, в связи с чем многие компиляторы по достижении этой фазы генерируют более низкоуровневое представление, называемое обычно промежуточным кодом.

Основными требованиями к промежуточному коду являются, с одной стороны, простота его получения из синтаксического дерева, и с другой стороны, простота генерации на его основе машинного кода.

Как следствие, часто в качестве промежуточного кода используется последовательность инструкций для некой абстрактной вычислительной машины.

На этом этапе обычно принимаются решения о распределении памяти для хранения значений переменных.

Машинно-независимая оптимизация

На фазе машинно-независимой оптимизации, промежуточный код преобразуется с целью “улучшения” без изменений наблюдаемого поведения (в соответствии со спецификацией языка 1 ). Под “улучшением” обычно понимается “ускорение”, но иногда возможны другие критерии, например “код меньшего размера” или “меньшее потребление памяти”.

Часто, алгоритм первичной генерации промежуточного кода достаточно простой, поэтому без фазы оптимизации, код оказывается достаточно неэффективным.

Объём работы, проделываемый различными компиляторами на этом этапе может сильно отличаться. Большинство распространённых на рынке компиляторов являются “оптимизирующими” и значительная часть времени компиляции уходит именно на оптимизацию (обычно есть способ отключить оптимизацию при необходимости).

Генерация целевого кода

Генератор целевого кода, получая на вход промежуточный код, отображает каждую команду промежуточного кода в одну или несколько команд целевого.

Кроме того, генератор целевого кода занимается задачей распределения регистров исполнительного устройства.

Машинно-зависимая оптимизация

Шаг машинно-зависимой оптимизации преобразует, как правило, уже целевой код. Основными способами оптимизации на данном этапе могут быть различные эквивалентные замены последовательностей машинных команд на более быстрые аналоги, не меняющие поведения перестановки команд или блоков команд, приводящие к ускорению и т.п.

Большинство решений машинно-зависимой оптимизации принимаются на основе модели исполнительного устройства, встроенной в компилятор. Например, в компилятор может быть включена информация об относительном времени выполнения различных инструкций определённого процессора (или семейства процессоров).

эта немаловажная оговорка доставляет много боли начинающим, а иногда и опытным, разработчикам C и C++↩︎

Источник

Что такое компилятор?

В этом гайде вы узнаете о том, что такое компилятор и как он работает. Мы разберем этапы компиляции и от чего зависит выбор подходящего компилятора. Этот материал поможет лучше понять, как компьютер выполняет программный код и почему иногда код не компилируется.

Зачем нужен компилятор?

Процессор — самая важная часть компьютера. Он обрабатывает информацию, выполняет команды пользователя и следит за работой всех подключенных устройств. Но процессор может разобрать только машинный код — набор 0 и 1, которые записаны в определённом порядке.

Почему именно 0 и 1? В процессор поступают электрические сигналы. Сильный сигнал обозначается цифрой 1, а слабый — 0. Набор таких цифр обозначает какую-то команду. Процессор ее распознает и выполняет.

Программы для первых компьютеров выглядели как огромные наборы 0 и 1. Чтобы записать такую программу, инженеры пользовались гибкими картонными карточками — перфокартами. Цифры на перфокарте записывались поочередно, в несколько строк. Чтобы записать 1, программист делал отверстие в карте. Места без отверстия обозначали 0.

Компьютер считывал перфокарту специальным устройством и выполнял записанную команду. Для одной программы составляли сотни перфокарт.

Писать их было долго и сложно, поэтому инженеры стали создавать языки программирования, обозначая команды словами и знаками. Для того, чтобы процессор понимал, какие команды записаны в программе, программисты создали компилятор — программу, которая преобразует программный код в машинный.

Как работает компилятор?

Преобразование программного кода в машинный называется компиляцией. Компиляция только преобразует код. Она не запускает его на исполнение. В этот момент он “статически” (то есть без запуска) транслируется в машинный код. Это сложный процесс, в котором сначала текст программы разбирается на части и анализируется, а затем генерируется код, понятный процессору.

Разберём этапы компиляции на примере вычисления периметра прямоугольника:

После запуска программы компилятору нужно определить, какие команды в ней записаны. Сначала компилятор разделяет программу на слова и знаки — токены, и записывает их в список. Такой процесс называется лексическим анализом. Его главная задача — получить токены.

Компилятор должен понять, какие токены в списке связаны с токен-оператором. Чтобы сделать это правильно, для каждого оператора строится специальная структура — логическое дерево или дерево разбора.

Так операция P = 2*(a + b) будет преобразована в логическое дерево:

Теперь каждое дерево нужно разобрать на команды, и каждую команду преобразовать в машинный код. Компилятор начинает читать дерево снизу вверх и составляет список команд:

Компилятор еще раз проверяет команды, находит ошибки и старается улучшить код. При успешном завершении этого этапа, компилятор переводит каждую команду в набор 0 и 1. Наборы записываются в файл, который сможет прочитать и выполнить процессор.

На чем написан компилятор?

В 1950-е годы группа разработчиков IBM под руководством Джона Бэкуса разработала первый высокоуровневый язык программирования Fortran, который позволил писать программы на понятном человеку языке. Помимо языка, инженеры работали и над компилятором. Он представлял собой программу с набором исполняемых команд, которая могла компилировать другие программы на Fortran, в том числе и улучшенную версию себя.

В дальнейшем язык Fortran и его компилятор использовали, чтобы написать компиляторы для новых языков программирования. Такой подход используют программисты и в настоящее время. Писать машинный код долго и неудобно. К тому же, для современных процессоров он может отличаться. Придется писать несколько версий одного и того же компилятора для разных компьютеров. Быстрее и проще написать компилятор на существующем языке программирования. Для этого разработчики выбирают удобный язык и пишут на нем первую версию своего компилятора. Он будет более универсальным для компьютеров и легко скомпилирует улучшенную версию себя.

Какие бывают компиляторы?

Ни один компилируемый язык программирования не обходится без компилятора. Некоторые компиляторы работают с несколькими языками программирования. Но программист должен учитывать еще и параметры компьютера, на котором программа будет запускаться.

Дело в том, что современные процессоры отличаются друг от друга устройством, поэтому машинный код для одного процессора будет понятен, а для другого нет. Это касается и операционных систем: одна и та же программа будет работать на Windows, но не запустится на Linux или MacOS. Поэтому нужно пользоваться тем компилятором, который работает с нужным процессором и операционной системой.

Если программа будет работать на нескольких операционных системах, то нужен кросс-компилятор — компилятор, который преобразует универсальный машинный код. Например, GNU Compiler Collection(сокращенно GCC) поддерживает C++, Objective-C, Java, Фортран, Ada, Go и поддерживает разную архитектуру процессоров.

Начинающие программисты даже не знают о наличии компилятора на компьютере. Они пишут программы в интегрированной среде разработки, в которую встроен компилятор, а иногда и не один. В этом случае, выбор компилятора делает среда, а не программист. Например, MS Visual Studio поддерживает компиляторы для операционных систем Windows, Linux, Android. Выбирая тип проекта, Visual Studio определяет процессор и операционную систему компьютера, и после этого выбирает подходящий компилятор.

Какие ошибки может определить компилятор?

Когда компилятор анализирует текст программы, он проверяет, соответствует ли запись оператора стандартам языка. Если найдено несоответствие, то компилятор выводит об этом информацию пользователю в виде ошибки. Когда вся программа разобрана, пользователь видит список ошибок, которые есть в коде, и может их исправить. Пока программист не исправит ошибки, компилятор не перейдет к следующему этапу — генерации машинного кода для процессора. Чаще всего компилятор показывает пользователю:

Иногда компилятор определяет код, который при выполнении дает неправильный результат. Но преобразовать такую программу в машинный код все-таки можно. В этом случае компилятор показывает пользователю предупреждение. Такая реакция компилятора больше похожа на рекомендации, но на них стоит обратить внимание. Программист сам решает оставить код с предупреждением или изменить программу. Анализируя текст программы, компилятор не только ищет ошибки, но еще и упрощает ее код. Такой процесс называется оптимизацией. Во время оптимизации компилятор изменяет программный код, но функции, которые выполняла программа, остаются прежними.

Выводы и рекомендации

Компилятор — переводчик между программистом и процессором. Он преобразует текст программы в машинный код, определяет ряд ошибок в программе и оптимизирует ее работу. Выбирая, где компилировать программу, важно помнить о том, что машинный код для процессоров и операционных систем будет разным, и подобрать правильный компилятор. Чем точнее компилятор определит команды, тем корректнее и быстрее будет работать программа. Для этого следуйте простым рекомендациям:

Частые вопросы

Чем компилятор отличается от интерпретатора?

Компилятор это программа, которая выполняет преобразование текста программы в другое представление, обычно машинный код, без его запуска, статически. Затем эта программа уже может быть запущена на выполнение. Интерпретатор сразу запускает код и выполняет его в процессе чтения. Промежуточного этапа как в компиляции нет.

Источник

Понравилась статья? Поделиться с друзьями:

Не пропустите наши новые статьи:

  • компиляция с файла gcc в linux
  • компиляция sh в линукс
  • компиляция python в linux
  • компиляция linux программ для windows
  • компиляция golang для linux

  • Операционные системы и программное обеспечение
    0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest
    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии